Gotowa bibliografia na temat „Deep Discriminative Probabilistic Models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Deep Discriminative Probabilistic Models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Deep Discriminative Probabilistic Models"
Kamran, Fahad, i Jenna Wiens. "Estimating Calibrated Individualized Survival Curves with Deep Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 240–48. http://dx.doi.org/10.1609/aaai.v35i1.16098.
Pełny tekst źródłaAl Moubayed, Noura, Stephen McGough i Bashar Awwad Shiekh Hasan. "Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling". PeerJ Computer Science 6 (27.01.2020): e252. http://dx.doi.org/10.7717/peerj-cs.252.
Pełny tekst źródłaBhattacharya, Debswapna. "refineD: improved protein structure refinement using machine learning based restrained relaxation". Bioinformatics 35, nr 18 (13.02.2019): 3320–28. http://dx.doi.org/10.1093/bioinformatics/btz101.
Pełny tekst źródłaWu, Boxi, Jie Jiang, Haidong Ren, Zifan Du, Wenxiao Wang, Zhifeng Li, Deng Cai, Xiaofei He, Binbin Lin i Wei Liu. "Towards In-Distribution Compatible Out-of-Distribution Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 9 (26.06.2023): 10333–41. http://dx.doi.org/10.1609/aaai.v37i9.26230.
Pełny tekst źródłaRoy, Debaditya, Sarunas Girdzijauskas i Serghei Socolovschi. "Confidence-Calibrated Human Activity Recognition". Sensors 21, nr 19 (30.09.2021): 6566. http://dx.doi.org/10.3390/s21196566.
Pełny tekst źródłaTsuda, Koji, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg i Klaus-Robert Müller. "A New Discriminative Kernel from Probabilistic Models". Neural Computation 14, nr 10 (1.10.2002): 2397–414. http://dx.doi.org/10.1162/08997660260293274.
Pełny tekst źródłaAhmed, Nisar, i Mark Campbell. "On estimating simple probabilistic discriminative models with subclasses". Expert Systems with Applications 39, nr 7 (czerwiec 2012): 6659–64. http://dx.doi.org/10.1016/j.eswa.2011.12.042.
Pełny tekst źródłaDu, Fang, Jiangshe Zhang, Junying Hu i Rongrong Fei. "Discriminative multi-modal deep generative models". Knowledge-Based Systems 173 (czerwiec 2019): 74–82. http://dx.doi.org/10.1016/j.knosys.2019.02.023.
Pełny tekst źródłaChe, Tong, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong i Yoshua Bengio. "Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 8 (18.05.2021): 7002–10. http://dx.doi.org/10.1609/aaai.v35i8.16862.
Pełny tekst źródłaMasegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen i Antonio Salmerón. "Probabilistic Models with Deep Neural Networks". Entropy 23, nr 1 (18.01.2021): 117. http://dx.doi.org/10.3390/e23010117.
Pełny tekst źródłaRozprawy doktorskie na temat "Deep Discriminative Probabilistic Models"
Misino, Eleonora. "Deep Generative Models with Probabilistic Logic Priors". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24058/.
Pełny tekst źródłaZhai, Menghua. "Deep Probabilistic Models for Camera Geo-Calibration". UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/74.
Pełny tekst źródłaGeorgatzis, Konstantinos. "Dynamical probabilistic graphical models applied to physiological condition monitoring". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28838.
Pełny tekst źródłaWu, Di. "Human action recognition using deep probabilistic graphical models". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6603/.
Pełny tekst źródłaSokolovska, Nataliya. "Contributions to the estimation of probabilistic discriminative models: semi-supervised learning and feature selection". Phd thesis, Télécom ParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00006257.
Pełny tekst źródłaHager, Paul Andrew. "Investigation of connection between deep learning and probabilistic graphical models". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119552.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 21).
The field of machine learning (ML) has benefitted greatly from its relationship with the field of classical statistics. In support of that continued expansion, the following proposes an alternative perspective at the link between these fields. The link focuses on probabilistic graphical models in the context of reinforcement learning. Viewing certain algorithms as reinforcement learning gives one an ability to map ML concepts to statistics problems. Training a multi-layer nonlinear perceptron algorithm is equivalent to structure learning problems in probabilistic graphical models (PGMs). The technique of boosting weak rules into an ensemble is weighted sampling. Finally regularizing neural networks using the dropout technique is conditioning on certain observations in PGMs.
by Paul Andrew Hager.
M. Eng.
Azizpour, Hossein. "Visual Representations and Models: From Latent SVM to Deep Learning". Doctoral thesis, KTH, Datorseende och robotik, CVAP, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192289.
Pełny tekst źródłaQC 20160908
Farouni, Tarek. "An Overview of Probabilistic Latent Variable Models with anApplication to the Deep Unsupervised Learning of ChromatinStates". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492189894812539.
Pełny tekst źródłaQian, Weizhu. "Discovering human mobility from mobile data : probabilistic models and learning algorithms". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA025.
Pełny tekst źródłaSmartphone usage data can be used to study human indoor and outdoor mobility. In our work, we investigate both aspects in proposing machine learning-based algorithms adapted to the different information sources that can be collected.In terms of outdoor mobility, we use the collected GPS coordinate data to discover the daily mobility patterns of the users. To this end, we propose an automatic clustering algorithm using the Dirichlet process Gaussian mixture model (DPGMM) so as to cluster the daily GPS trajectories. This clustering method is based on estimating probability densities of the trajectories, which alleviate the problems caused by the data noise.By contrast, we utilize the collected WiFi fingerprint data to study indoor human mobility. In order to predict the indoor user location at the next time points, we devise a hybrid deep learning model, called the convolutional mixture density recurrent neural network (CMDRNN), which combines the advantages of different multiple deep neural networks. Moreover, as for accurate indoor location recognition, we presume that there exists a latent distribution governing the input and output at the same time. Based on this assumption, we develop a variational auto-encoder (VAE)-based semi-supervised learning model. In the unsupervised learning procedure, we employ a VAE model to learn a latent distribution of the input, the WiFi fingerprint data. In the supervised learning procedure, we use a neural network to compute the target, the user coordinates. Furthermore, based on the same assumption used in the VAE-based semi-supervised learning model, we leverage the information bottleneck theory to devise a variational information bottleneck (VIB)-based model. This is an end-to-end deep learning model which is easier to train and has better performance.Finally, we validate thees proposed methods on several public real-world datasets providing thus results that verify the efficiencies of our methods as compared to other existing methods generally used
SYED, MUHAMMAD FARRUKH SHAHID. "Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT". Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Pełny tekst źródłaKsiążki na temat "Deep Discriminative Probabilistic Models"
A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding. Providence, USA: Brown University, 2019.
Znajdź pełny tekst źródłaOaksford, Mike, i Nick Chater. Causal Models and Conditional Reasoning. Redaktor Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.5.
Pełny tekst źródłaTrappenberg, Thomas P. Fundamentals of Machine Learning. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.001.0001.
Pełny tekst źródłaCzęści książek na temat "Deep Discriminative Probabilistic Models"
Sucar, Luis Enrique. "Deep Learning and Graphical Models". W Probabilistic Graphical Models, 327–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_16.
Pełny tekst źródłaGustafsson, Fredrik K., Martin Danelljan, Goutam Bhat i Thomas B. Schön. "Energy-Based Models for Deep Probabilistic Regression". W Computer Vision – ECCV 2020, 325–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58565-5_20.
Pełny tekst źródłaNkambule, Tshepo, i Ritesh Ajoodha. "Classification of Music by Genre Using Probabilistic Models and Deep Learning Models". W Proceedings of Sixth International Congress on Information and Communication Technology, 185–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_17.
Pełny tekst źródłaHung, Alex Ling Yu, Zhiqing Sun, Wanwen Chen i John Galeotti. "Hierarchical Probabilistic Ultrasound Image Inpainting via Variational Inference". W Deep Generative Models, and Data Augmentation, Labelling, and Imperfections, 83–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88210-5_7.
Pełny tekst źródłaVölcker, Claas, Alejandro Molina, Johannes Neumann, Dirk Westermann i Kristian Kersting. "DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets". W Machine Learning and Knowledge Discovery in Databases, 28–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43823-4_3.
Pełny tekst źródłaDinh, Xuan Truong, i Hai Van Pham. "Social Network Analysis Based on Combining Probabilistic Models with Graph Deep Learning". W Communication and Intelligent Systems, 975–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1089-9_76.
Pełny tekst źródłaLinghu, Yuan, Xiangxue Li i Zhenlong Zhang. "Deep Learning vs. Traditional Probabilistic Models: Case Study on Short Inputs for Password Guessing". W Algorithms and Architectures for Parallel Processing, 468–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38991-8_31.
Pełny tekst źródłaAbid, M., Y. Ouakrim, A. Mitiche, P. A. Vendittoli, N. Hagemeister i N. Mezghani. "A Comparative Study of End-To-End Discriminative Deep Learning Models for Knee Joint Kinematic Time Series Classification". W Biomedical Signal Processing, 33–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67494-6_2.
Pełny tekst źródłaLiu, Zheng, i Hao Wang. "Research on Process Diagnosis of Severe Accidents Based on Deep Learning and Probabilistic Safety Analysis". W Springer Proceedings in Physics, 624–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_54.
Pełny tekst źródłaRachmadi, Muhammad Febrian, Maria del C. Valdés-Hernández, Rizal Maulana, Joanna Wardlaw, Stephen Makin i Henrik Skibbe. "Probabilistic Deep Learning with Adversarial Training and Volume Interval Estimation - Better Ways to Perform and Evaluate Predictive Models for White Matter Hyperintensities Evolution". W Predictive Intelligence in Medicine, 168–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87602-9_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Deep Discriminative Probabilistic Models"
Wang, Xin, i Siu Ming Yiu. "Classification with Rejection: Scaling Generative Classifiers with Supervised Deep Infomax". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/412.
Pełny tekst źródłaWang, Mengqiu, i Luo Si. "Discriminative probabilistic models for passage based retrieval". W the 31st annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390334.1390407.
Pełny tekst źródłaLloyd, John, Yijiong Lin i Nathan Lepora. "Probabilistic Discriminative Models address the Tactile Perceptual Aliasing Problem". W Robotics: Science and Systems 2021. Robotics: Science and Systems Foundation, 2021. http://dx.doi.org/10.15607/rss.2021.xvii.057.
Pełny tekst źródłaSokolovska, Nataliya, Olivier Cappé i François Yvon. "The asymptotics of semi-supervised learning in discriminative probabilistic models". W the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390280.
Pełny tekst źródłaErkan, A. N., O. Kroemer, R. Detry, Y. Altun, J. Piater i J. Peters. "Learning probabilistic discriminative models of grasp affordances under limited supervision". W 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5650088.
Pełny tekst źródłavan Dalen, R. C., J. Yang, H. Wang, A. Ragni, C. Zhang i M. J. F. Gales. "Structured discriminative models using deep neural-network features". W 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, 2015. http://dx.doi.org/10.1109/asru.2015.7404789.
Pełny tekst źródłaCetintas, Suleyman, Monica Rogati, Luo Si i Yi Fang. "Identifying similar people in professional social networks with discriminative probabilistic models". W the 34th international ACM SIGIR conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2009916.2010123.
Pełny tekst źródłaZhuowen Tu. "Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering". W Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005. http://dx.doi.org/10.1109/iccv.2005.194.
Pełny tekst źródłaXie, Qianqian, Jimin Huang, Min Peng, Yihan Zhang, Kaifei Peng i Hua Wang. "Discriminative Regularized Deep Generative Models for Semi-Supervised Learning". W 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019. http://dx.doi.org/10.1109/icdm.2019.00076.
Pełny tekst źródłaLiu, Xixi, Che-Tsung Lin i Christopher Zach. "Energy-based Models for Deep Probabilistic Regression". W 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9955636.
Pełny tekst źródła