Gotowa bibliografia na temat „DECISION TREE TECHNIQUE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DECISION TREE TECHNIQUE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DECISION TREE TECHNIQUE"
Dr. S.Vijayarani, Dr S. Vijayarani, i M. Sangeetha M. Sangeetha. "An Efficient Technique for Privacy Preserving Decision Tree Learning". Indian Journal of Applied Research 3, nr 9 (1.10.2011): 127–30. http://dx.doi.org/10.15373/2249555x/sept2013/40.
Pełny tekst źródłaCai, Yuliang, Huaguang Zhang, Qiang He i Shaoxin Sun. "New classification technique: fuzzy oblique decision tree". Transactions of the Institute of Measurement and Control 41, nr 8 (11.06.2018): 2185–95. http://dx.doi.org/10.1177/0142331218774614.
Pełny tekst źródłaMaazouzi, Faiz, i Halima Bahi. "Using multi decision tree technique to improving decision tree classifier". International Journal of Business Intelligence and Data Mining 7, nr 4 (2012): 274. http://dx.doi.org/10.1504/ijbidm.2012.051712.
Pełny tekst źródłaKaur, Amanpreet. "IMAGE COMPRESSION USING DECISION TREE TECHNIQUE". International Journal of Advanced Research in Computer Science 8, nr 8 (30.08.2017): 682–88. http://dx.doi.org/10.26483/ijarcs.v8i8.4812.
Pełny tekst źródłaOlaru, Cristina, i Louis Wehenkel. "A complete fuzzy decision tree technique". Fuzzy Sets and Systems 138, nr 2 (wrzesień 2003): 221–54. http://dx.doi.org/10.1016/s0165-0114(03)00089-7.
Pełny tekst źródłaSharma, Dr Nirmla, i Sameera Iqbal Muhmmad Iqbal. "Applying Decision Tree Algorithm Classification and Regression Tree (CART) Algorithm to Gini Techniques Binary Splits". International Journal of Engineering and Advanced Technology 12, nr 5 (30.06.2023): 77–81. http://dx.doi.org/10.35940/ijeat.e4195.0612523.
Pełny tekst źródłaAmraee, Turaj, i Soheil Ranjbar. "Transient Instability Prediction Using Decision Tree Technique". IEEE Transactions on Power Systems 28, nr 3 (sierpień 2013): 3028–37. http://dx.doi.org/10.1109/tpwrs.2013.2238684.
Pełny tekst źródłaBavirthi, Swathi Sowmya, i Supreethi K. P. "Systematic Review of Indexing Spatial Skyline Queries for Decision Support". International Journal of Decision Support System Technology 14, nr 1 (styczeń 2022): 1–15. http://dx.doi.org/10.4018/ijdsst.286685.
Pełny tekst źródłaCho, Sung-bin. "Corporate Bankruptcy Prediction using Decision Tree Ensemble Technique". Journal of the Korea Management Engineers Society 25, nr 4 (31.12.2020): 63–71. http://dx.doi.org/10.35373/kmes.25.4.5.
Pełny tekst źródłaDivyashree, S., i H. R. Divakar. "Prediction of Human Health using Decision Tree Technique". International Journal of Computer Sciences and Engineering 6, nr 6 (30.06.2018): 805–8. http://dx.doi.org/10.26438/ijcse/v6i6.805808.
Pełny tekst źródłaRozprawy doktorskie na temat "DECISION TREE TECHNIQUE"
Yedida, Venkata Rama Kumar Swamy. "Protein Function Prediction Using Decision Tree Technique". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1216313412.
Pełny tekst źródłaLi, Yunjie. "Applying Data Mining Techniques on Continuous Sensed Data : For daily living activity recognition". Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23424.
Pełny tekst źródłaThomas, Clifford S. "From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique". Thesis, University of Stirling, 2005. http://hdl.handle.net/1893/2623.
Pełny tekst źródłaDalkiran, Evrim. "Discrete and Continuous Nonconvex Optimization: Decision Trees, Valid Inequalities, and Reduced Basis Techniques". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77366.
Pełny tekst źródłaPh. D.
Twala, Bhekisipho. "Effective techniques for handling incomplete data using decision trees". Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418465.
Pełny tekst źródłaMillerand, Gaëtan. "Enhancing decision tree accuracy and compactness with improved categorical split and sampling techniques". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279454.
Pełny tekst źródłaBeslutsträd är en av de mest populära algoritmerna i den förklarbara AI-domänen. I själva verket är det från dess struktur verkligen enkelt att framställa en uppsättning beslutsregler som är helt förståeliga för en vanlig användare. Därför forskas det för närvarande på att förbättra beslut eller kartlägga andra modeller i ett träd. Beslutsträd genererat av C4.5 eller ID3-träd lider av två huvudproblem. Den första är att de ofta har lägre prestanda när det gäller noggrannhet för klassificeringsuppgifter eller medelkvadratfel för regressionsuppgiftens noggrannhet jämfört med modernaste modeller som XGBoost eller djupa neurala nätverk. I nästan varje uppgift finns det faktiskt ett viktigt gap mellan toppmodeller som XGboost och beslutsträd. Detta examensarbete tar upp detta problem genom att tillhandahålla en ny metod baserad på dataförstärkning med hjälp av modernaste modeller som överträffar de gamla när det gäller utvärderingsmätningar. Det andra problemet är beslutsträdets kompakthet, allteftersom djupet ökar, blir uppsättningen av regler exponentiellt stor, särskilt när det delade attributet är kategoriskt. Standardlösning för att hantera kategoriska värden är att förvandla dem till dummiesvariabler eller dela på varje värde som producerar komplexa modeller. En jämförande studie av nuvarande metoder för att dela kategoriska värden i klassificeringsproblem görs i detta examensarbete, en ny metod studeras också i fallet med regression.
Valente, Lorenzo. "Reconstruction of non-prompt charmed baryon Λc with boosted decision trees technique". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21033/.
Pełny tekst źródłaTownsend, Whitney Jeanne. "Discrete function representations utilizing decision diagrams and spectral techniques". Thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-07012002-160303.
Pełny tekst źródłaRavula, Ravindar Reddy. "Classification of Malware using Reverse Engineering and Data Mining Techniques". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1311042709.
Pełny tekst źródłaJia, Xiuping Electrical Engineering Australian Defence Force Academy UNSW. "Classification techniques for hyperspectral remote sensing image data". Awarded by:University of New South Wales - Australian Defence Force Academy. School of Electrical Engineering, 1996. http://handle.unsw.edu.au/1959.4/38713.
Pełny tekst źródłaKsiążki na temat "DECISION TREE TECHNIQUE"
Irniger, Christophe-André Mario. Graph matching: Filtering databases of graphs using machine learning techniques. Berlin: AKA, 2005.
Znajdź pełny tekst źródłaVidales, A. MACHINE LEARNING with MATLAB. CLASSIFICATION TECHNIQUES: CLUSTER ANALYSIS, DECISION TREES, DISCRIMINANT ANALYSIS and NAIVE BAYES. Independently Published, 2019.
Znajdź pełny tekst źródłaCriminisi, A., J. Shotton i Antonio Criminisi. Decision Forests for Computer Vision and Medical Image Analysis. Springer London, Limited, 2016.
Znajdź pełny tekst źródłaDecision Forests For Computer Vision And Medical Image Analysis. Springer London Ltd, 2013.
Znajdź pełny tekst źródłaLópez, César Pérez. DATA MINING and MACHINE LEARNING. PREDICTIVE TECHNIQUES : ENSEMBLE METHODS, BOOSTING, BAGGING, RANDOM FOREST, DECISION TREES and REGRESSION TREES.: Examples with MATLAB. Lulu Press, Inc., 2021.
Znajdź pełny tekst źródłaChastre, Jean. Diagnosis and management of nosocomial pneumonia. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0117.
Pełny tekst źródłaDATA MINING and MACHINE LEARNING. CLASSIFICATION PREDICTIVE TECHNIQUES : SUPPORT VECTOR MACHINE, LOGISTIC REGRESSION, DISCRIMINANT ANALYSIS and DECISION TREES: Examples with MATLAB. Lulu Press, Inc., 2021.
Znajdź pełny tekst źródłaKerrigan, John. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198793755.003.0001.
Pełny tekst źródłaMooney, Raymond J. Machine Learning. Redaktor Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0020.
Pełny tekst źródłaCraig, Anne, i Anthea Hatfield. The Complete Recovery Room Book. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846840.001.0001.
Pełny tekst źródłaCzęści książek na temat "DECISION TREE TECHNIQUE"
Xiang, Yu, i Li Ma. "A Priority Heuristic Correlation Technique for Decision Tree Pruning". W Lecture Notes in Electrical Engineering, 176–82. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9244-4_25.
Pełny tekst źródłaTinabo, Rose. "Decision Tree Technique for Customer Retention in Retail Sector". W Communications in Computer and Information Science, 123–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22247-4_11.
Pełny tekst źródłaDesai, Vijaya S., i Sharad Joshi. "Application of Decision Tree Technique to Analyze Construction Project Data". W Information Systems, Technology and Management, 304–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12035-0_30.
Pełny tekst źródłaAmeer Basha, G., K. Lakshmana Gupta i K. Ramakrishna. "Expectation of Radar Returns from Ionosphere Using Decision Tree Technique". W Advances in Data Science and Management, 209–14. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0978-0_20.
Pełny tekst źródłaNilosey, Shivam, Abhishek Pipliya i Vijay Malviya. "Real-Time Classification of Twitter Data Using Decision Tree Technique". W Social Networking and Computational Intelligence, 173–81. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2071-6_14.
Pełny tekst źródłaAbdelhalim, Amany, Issa Traore i Bassam Sayed. "RBDT-1: A New Rule-Based Decision Tree Generation Technique". W Lecture Notes in Computer Science, 108–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04985-9_12.
Pełny tekst źródłaSchetinin, Vitaly, Jonathan E. Fieldsend, Derek Partridge, Wojtek J. Krzanowski, Richard M. Everson, Trevor C. Bailey i Adolfo Hernandez. "Estimating Classification Uncertainty of Bayesian Decision Tree Technique on Financial Data". W Perception-based Data Mining and Decision Making in Economics and Finance, 155–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-36247-0_6.
Pełny tekst źródłaWalia, Himdweep, Ajay Rana i Vineet Kansal. "A Decision Tree Based Supervised Program Interpretation Technique for Gurmukhi Language". W Data Science and Analytics, 356–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5830-6_30.
Pełny tekst źródłaSettu, Nithya, i M. Rajasekhara Babu. "Enhancing the Performance of Decision Tree Using NSUM Technique for Diabetes Patients". W Internet of Things and Personalized Healthcare Systems, 13–20. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0866-6_2.
Pełny tekst źródłaAhlawat, Khyati, i Amit Prakash Singh. "A Novel Hybrid Technique for Big Data Classification Using Decision Tree Learning". W Communications in Computer and Information Science, 118–28. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6427-2_10.
Pełny tekst źródłaStreszczenia konferencji na temat "DECISION TREE TECHNIQUE"
Zukhronah, Etik, Yuliana Susanti, Hasih Pratiwi, Respatiwulan i Sri Sulistijowati H. "Decision tree technique for classifying cassava production". W THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges. Author(s), 2018. http://dx.doi.org/10.1063/1.5062777.
Pełny tekst źródłaCheng, Ken Chau-Cheung, Katherine Shu-Min Li, Sying-Jyan Wang, Andrew Yi-Ann Huang, Chen-Shiun Lee, Leon Li-Yang Chen, Peter Yi-Yu Liao i Nova Cheng-Yen Tsai. "Wafer Defect Pattern Classification with Explainable-Decision Tree Technique". W 2022 IEEE International Test Conference (ITC). IEEE, 2022. http://dx.doi.org/10.1109/itc50671.2022.00070.
Pełny tekst źródłaZakerian, A., A. Maleki, Y. Mohammadnian i T. Amraee. "Bad data detection in state estimation using Decision Tree technique". W 2017 Iranian Conference on Electrical Engineering (ICEE). IEEE, 2017. http://dx.doi.org/10.1109/iraniancee.2017.7985192.
Pełny tekst źródłaSchetinin, Vitaly, Wojtek Krzanowski i Carsten Maple. "The Bayesian Decision Tree Technique Using an Adaptive Sampling Scheme". W Twentieth IEEE International Symposium on Computer-Based Medical Systems. IEEE, 2007. http://dx.doi.org/10.1109/cbms.2007.109.
Pełny tekst źródłaBhat, Ishani, V. Umadevi, Nishchitha Jagadeesh, Savithri Bhat i Rashmi S. Shenoy. "Tender Coconut Classification using Decision Tree and Deep Learning Technique". W 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2023. http://dx.doi.org/10.1109/spin57001.2023.10117353.
Pełny tekst źródłaKeerthika, J., D. Sruthi, D. Swathi, S. Swetha i R. Vinupriya. "Diagnosis of Breast Cancer using Decision Tree Data Mining Technique". W 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2021. http://dx.doi.org/10.1109/icaccs51430.2021.9442043.
Pełny tekst źródłaZen, Heiga, Keiichi Tokuda i Tadashi Kitamura. "Decision tree distribution tying based on a dimensional split technique". W 7th International Conference on Spoken Language Processing (ICSLP 2002). ISCA: ISCA, 2002. http://dx.doi.org/10.21437/icslp.2002-387.
Pełny tekst źródłaGupta, Varun, Neeraj Garg i Tarun Gupta. "Search Bot: Search Intention Based Filtering Using Decision Tree Based Technique". W 2012 3rd International Conference on Intelligent Systems, Modelling and Simulation (ISMS). IEEE, 2012. http://dx.doi.org/10.1109/isms.2012.78.
Pełny tekst źródłaDas, Ariyam, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang i Carlo Zaniolo. "Learn Smart with Less: Building Better Online Decision Trees with Fewer Training Examples". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/306.
Pełny tekst źródłaDerrouiche, Ridha, Pongsak Holimchayachotikul i Komgrit Leksakul. "Predictive performance model in collaborative supply chain using decision tree and clustering technique". W 2011 4th International Conference on Logistics (LOGISTIQUA). IEEE, 2011. http://dx.doi.org/10.1109/logistiqua.2011.5939435.
Pełny tekst źródłaRaporty organizacyjne na temat "DECISION TREE TECHNIQUE"
Quiller, Ryan. Decision Tree Technique for Particle Identification. Office of Scientific and Technical Information (OSTI), wrzesień 2003. http://dx.doi.org/10.2172/815649.
Pełny tekst źródłaZio, Enrico, i Nicola Pedroni. Uncertainty characterization in risk analysis for decision-making practice. Fondation pour une culture de sécurité industrielle, maj 2012. http://dx.doi.org/10.57071/155chr.
Pełny tekst źródłaLiu, Hongrui, i Rahul Ramachandra Shetty. Analytical Models for Traffic Congestion and Accident Analysis. Mineta Transportation Institute, listopad 2021. http://dx.doi.org/10.31979/mti.2021.2102.
Pełny tekst źródłaHart, Carl R., D. Keith Wilson, Chris L. Pettit i Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, lipiec 2021. http://dx.doi.org/10.21079/11681/41182.
Pełny tekst źródła