Artykuły w czasopismach na temat „Debiased machine learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Debiased machine learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ahrens, Achim, Christian B. Hansen, Mark E. Schaffer i Thomas Wiemann. "ddml: Double/debiased machine learning in Stata". Stata Journal: Promoting communications on statistics and Stata 24, nr 1 (marzec 2024): 3–45. http://dx.doi.org/10.1177/1536867x241233641.
Pełny tekst źródłaChernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen i Whitney Newey. "Double/Debiased/Neyman Machine Learning of Treatment Effects". American Economic Review 107, nr 5 (1.05.2017): 261–65. http://dx.doi.org/10.1257/aer.p20171038.
Pełny tekst źródłaChen, Jau-er, Chien-Hsun Huang i Jia-Jyun Tien. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions". Econometrics 9, nr 2 (2.04.2021): 15. http://dx.doi.org/10.3390/econometrics9020015.
Pełny tekst źródłaChernozhukov, Victor, Whitney K. Newey i Rahul Singh. "Automatic Debiased Machine Learning of Causal and Structural Effects". Econometrica 90, nr 3 (2022): 967–1027. http://dx.doi.org/10.3982/ecta18515.
Pełny tekst źródłaLiu, Molei, Yi Zhang i Doudou Zhou. "Double/debiased machine learning for logistic partially linear model". Econometrics Journal 24, nr 3 (11.06.2021): 559–88. http://dx.doi.org/10.1093/ectj/utab019.
Pełny tekst źródłaChernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey i James Robins. "Double/debiased machine learning for treatment and structural parameters". Econometrics Journal 21, nr 1 (16.01.2018): C1—C68. http://dx.doi.org/10.1111/ectj.12097.
Pełny tekst źródłaChang, Neng-Chieh. "Double/debiased machine learning for difference-in-differences models". Econometrics Journal 23, nr 2 (4.02.2020): 177–91. http://dx.doi.org/10.1093/ectj/utaa001.
Pełny tekst źródłaFu, Runshan, Yan Huang i Param Vir Singh. "Crowds, Lending, Machine, and Bias". Information Systems Research 32, nr 1 (1.03.2021): 72–92. http://dx.doi.org/10.1287/isre.2020.0990.
Pełny tekst źródłaJung, Yonghan, Jin Tian i Elias Bareinboim. "Estimating Identifiable Causal Effects through Double Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 13 (18.05.2021): 12113–22. http://dx.doi.org/10.1609/aaai.v35i13.17438.
Pełny tekst źródłaTsai, Yun-Da, Cayon Liow, Yin Sheng Siang i Shou-De Lin. "Toward More Generalized Malicious URL Detection Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 19 (24.03.2024): 21628–36. http://dx.doi.org/10.1609/aaai.v38i19.30161.
Pełny tekst źródłaHridi, Anurata Prabha, Rajeev Sahay, Seyyedali Hosseinalipour i Bita Akram. "Revolutionizing AI-Assisted Education with Federated Learning: A Pathway to Distributed, Privacy-Preserving, and Debiased Learning Ecosystems". Proceedings of the AAAI Symposium Series 3, nr 1 (20.05.2024): 297–303. http://dx.doi.org/10.1609/aaaiss.v3i1.31217.
Pełny tekst źródłaJiang, Xiangxiang, Gang Lv, Minghui Li i Kevin Lu. "CAUSAL EFFECT OF ANTI-DEMENTIA DRUGS ON PATIENTS’ ECONOMIC BURDEN USING DOUBLE/DEBIASED MACHINE LEARNING APPROACH". Innovation in Aging 7, Supplement_1 (1.12.2023): 1000. http://dx.doi.org/10.1093/geroni/igad104.3213.
Pełny tekst źródłaWei, Rongrong, i Yueming Xia. "Digital transformation and corporate green total factor productivity: Based on double/debiased machine learning robustness estimation". Economic Analysis and Policy 84 (grudzień 2024): 808–27. http://dx.doi.org/10.1016/j.eap.2024.09.023.
Pełny tekst źródłaChernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey i James M. Robins. "Locally Robust Semiparametric Estimation". Econometrica 90, nr 4 (2022): 1501–35. http://dx.doi.org/10.3982/ecta16294.
Pełny tekst źródłaZhang, Yingheng, Haojie Li i Gang Ren. "Quantifying the social impacts of the London Night Tube with a double/debiased machine learning based difference-in-differences approach". Transportation Research Part A: Policy and Practice 163 (wrzesień 2022): 288–303. http://dx.doi.org/10.1016/j.tra.2022.07.015.
Pełny tekst źródłaGuo, Yaming, Meng Li, Keqiang Li, Huiping Li i Yunxuan Li. "Unraveling the determinants of traffic incident duration: A causal investigation using the framework of causal forests with debiased machine learning". Accident Analysis & Prevention 208 (grudzień 2024): 107806. http://dx.doi.org/10.1016/j.aap.2024.107806.
Pełny tekst źródłaIchimura, Hidehiko, i Whitney K. Newey. "The influence function of semiparametric estimators". Quantitative Economics 13, nr 1 (2022): 29–61. http://dx.doi.org/10.3982/qe826.
Pełny tekst źródłaZhang, Guidong, Jianlong Wang i Yong Liu. "How does auditing outgoing officials' natural resource asset management policies affect carbon emission efficiency? Evidence from a debiased machine learning model". Journal of Cleaner Production 478 (listopad 2024): 143932. http://dx.doi.org/10.1016/j.jclepro.2024.143932.
Pełny tekst źródła包, 娣娜. "The Impact of Carbon Emission Trading on the Environmental Performance of Emission Control Enterprises—Based on Double/Debiased Machine Learning Model". Journal of Low Carbon Economy 13, nr 04 (2024): 276–84. http://dx.doi.org/10.12677/jlce.2024.134027.
Pełny tekst źródłaZhang, Qinghua, Yuhang Chen, Yilin Zhong i Junhao Zhong. "The positive effects of the higher education expansion policy on urban innovation in China". AIMS Mathematics 9, nr 2 (2024): 2985–3010. http://dx.doi.org/10.3934/math.2024147.
Pełny tekst źródłaGirma, Sourafel, i David Paton. "Using double-debiased machine learning to estimate the impact of Covid-19 vaccination on mortality and staff absences in elderly care homes." European Economic Review 170 (listopad 2024): 104882. http://dx.doi.org/10.1016/j.euroecorev.2024.104882.
Pełny tekst źródłaNguyen-Phung, Hang Thu, i Hai Le. "Energy Poverty and Health Expenditure: Empirical Evidence from Vietnam". Social Sciences 13, nr 5 (6.05.2024): 253. http://dx.doi.org/10.3390/socsci13050253.
Pełny tekst źródłaOlivares, Barlin O., Juan C. Rey, Guillermo Perichi i Deyanira Lobo. "Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela". Sustainability 14, nr 20 (19.10.2022): 13531. http://dx.doi.org/10.3390/su142013531.
Pełny tekst źródłaLi, Hairui, Xuemei Liu, Xiaolu Chen i Xianfeng Huai. "Robust Anomaly Recognition in Hydraulic Structural Safety Monitoring: A Methodology Based on Deconfounding Boosted Regression Trees". Mathematical Problems in Engineering 2023 (16.08.2023): 1–15. http://dx.doi.org/10.1155/2023/7854792.
Pełny tekst źródłaLi, Enji, Qing Chen, Xinyan Zhang i Chen Zhang. "Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China". Sustainability 15, nr 3 (30.01.2023): 2472. http://dx.doi.org/10.3390/su15032472.
Pełny tekst źródłaPinkava, Thomas, Jack McFarland i Afra Mashhadi. "A Model- and Data-Agnostic Debiasing System for Achieving Equalized Odds". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16.10.2024): 1123–31. http://dx.doi.org/10.1609/aies.v7i1.31709.
Pełny tekst źródłaChowdhury, Somnath Basu Roy, i Snigdha Chaturvedi. "Learning Fair Representations via Rate-Distortion Maximization". Transactions of the Association for Computational Linguistics 10 (2022): 1159–74. http://dx.doi.org/10.1162/tacl_a_00512.
Pełny tekst źródłaIslam, Rashidul, Huiyuan Chen i Yiwei Cai. "Fairness without Demographics through Shared Latent Space-Based Debiasing". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 11 (24.03.2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Pełny tekst źródłaRana, Saadia Afzal, Zati Hakim Azizul i Ali Afzal Awan. "A step toward building a unified framework for managing AI bias". PeerJ Computer Science 9 (26.10.2023): e1630. http://dx.doi.org/10.7717/peerj-cs.1630.
Pełny tekst źródłaMaasoumi, Esfandiar Essie, Jianqiu Wang, Zhuo Wang i Ke Wu. "Identifying Factors via Automatic Debiased Machine Learning". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4223091.
Pełny tekst źródłaChiang, Harold D., Kengo Kato, Yukun Ma i Yuya Sasaki. "Multiway Cluster Robust Double/Debiased Machine Learning". Journal of Business & Economic Statistics, 19.04.2021, 1–11. http://dx.doi.org/10.1080/07350015.2021.1895815.
Pełny tekst źródłaAhrens, Achim, Christian Hansen, Mark Schaffer i Thomas T. Wiemann. "Ddml: Double/Debiased Machine Learning in Stata". SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4368837.
Pełny tekst źródłaMaasoumi, Esfandiar, Jianqiu Wang, Zhuo Wang i Ke Wu. "Identifying factors via automatic debiased machine learning". Journal of Applied Econometrics, 13.02.2024. http://dx.doi.org/10.1002/jae.3031.
Pełny tekst źródłaSemenova, Vira. "Debiased machine learning of set-identified linear models". Journal of Econometrics, styczeń 2023. http://dx.doi.org/10.1016/j.jeconom.2022.12.010.
Pełny tekst źródłaChernozhukov, V., W. K. Newey i R. Singh. "A Simple and General Debiased Machine Learning Theorem with Finite Sample Guarantees". Biometrika, 14.06.2022. http://dx.doi.org/10.1093/biomet/asac033.
Pełny tekst źródłaDai, Xiaowu, i Lexin Li. "Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis". Journal of the American Statistical Association, 3.02.2022, 1–15. http://dx.doi.org/10.1080/01621459.2021.2013851.
Pełny tekst źródłaKim, Gene Hyungjin. "Double/Debiased Machine Learning for Static Games with Incomplete Information". SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4377695.
Pełny tekst źródłaSemenova, Vira, i Victor Chernozhukov. "Debiased machine learning of conditional average treatment effects and other causal functions". Econometrics Journal, 29.08.2020. http://dx.doi.org/10.1093/ectj/utaa027.
Pełny tekst źródłaJin, Zequn, Lihua Lin i Zhengyu Zhang. "Identification and Auto-debiased Machine Learning for Outcome-Conditioned Average Structural Derivatives". Journal of Business & Economic Statistics, 24.01.2024, 1–27. http://dx.doi.org/10.1080/07350015.2024.2310022.
Pełny tekst źródłaShi, Bowen, Xiaojie Mao, Mochen Yang i Bo Li. "What, Why, and How: An Empiricist's Guide to Double/Debiased Machine Learning". SSRN Electronic Journal, 2024. http://dx.doi.org/10.2139/ssrn.4677153.
Pełny tekst źródłaDíaz, Iván. "Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning". Biostatistics, 19.11.2019. http://dx.doi.org/10.1093/biostatistics/kxz042.
Pełny tekst źródłaMoccia, Chiara, Giovenale Moirano, Maja Popovic, Costanza Pizzi, Piero Fariselli, Lorenzo Richiardi, Claus Thorn Ekstrøm i Milena Maule. "Machine learning in causal inference for epidemiology". European Journal of Epidemiology, 13.11.2024. http://dx.doi.org/10.1007/s10654-024-01173-x.
Pełny tekst źródłaFeyzollahi, Maryam, i Nima Rafizadeh. "Double/Debiased Machine Learning for Economists: Practical Guidelines, Best Practices, and Common Pitfalls". SSRN Electronic Journal, 2024. http://dx.doi.org/10.2139/ssrn.4703243.
Pełny tekst źródłaBhagavathula, Akshaya Srikanth. "Causal Analysis of PFAS Exposure and Cardiovascular Risk Using Double/Debiased Machine Learning". Annals of Epidemiology, sierpień 2024. http://dx.doi.org/10.1016/j.annepidem.2024.07.050.
Pełny tekst źródłaKabata, Daijiro, i Mototsugu Shintani. "Variable selection in double/debiased machine learning for causal inference: an outcome-adaptive approach". Communications in Statistics - Simulation and Computation, 15.11.2021, 1–14. http://dx.doi.org/10.1080/03610918.2021.2001655.
Pełny tekst źródłaLoecher, Markus. "Debiasing SHAP scores in random forests". AStA Advances in Statistical Analysis, 22.08.2023. http://dx.doi.org/10.1007/s10182-023-00479-7.
Pełny tekst źródłaWang, Clarice, Kathryn Wang, Andrew Y. Bian, Rashidul Islam, Kamrun Naher Keya, James Foulds i Shimei Pan. "When Biased Humans Meet Debiased AI: A Case Study in College Major Recommendation". ACM Transactions on Interactive Intelligent Systems, sierpień 2023. http://dx.doi.org/10.1145/3611313.
Pełny tekst źródłaZhong, Junhao, Zhenzhen Wang i Yunfeng Deng. "Driving the Green Transformation of Enterprises: The Role of Patent Insurance". Managerial and Decision Economics, 21.11.2024. http://dx.doi.org/10.1002/mde.4439.
Pełny tekst źródłaKamal, Kimia, i Bilal Farooq. "Debiased Machine Learning for Estimating the Causal Effect of Urban Traffic on Pedestrian Crossing Behavior". Transportation Research Record: Journal of the Transportation Research Board, 8.02.2023, 036119812311522. http://dx.doi.org/10.1177/03611981231152246.
Pełny tekst źródłaKovács, Dávid Péter, William McCorkindale i Alpha A. Lee. "Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias". Nature Communications 12, nr 1 (16.03.2021). http://dx.doi.org/10.1038/s41467-021-21895-w.
Pełny tekst źródła