Gotowa bibliografia na temat „DC-AC CONVERSIONS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „DC-AC CONVERSIONS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "DC-AC CONVERSIONS"
Yang, Da Wei, Jian Hua Yang, Fei Lin, Jian Su i Hai Tao Liu. "Application and Selection to AC and DC Voltage Grades for Microgrids". Advanced Materials Research 791-793 (wrzesień 2013): 1876–79. http://dx.doi.org/10.4028/www.scientific.net/amr.791-793.1876.
Pełny tekst źródłaSzekely, Norbert Csaba, Sorin Ionut Salcu, Vasile Mihai Suciu, Lucian Nicolae Pintilie, Gheorghe Ioan Fasola i Petre Dorel Teodosescu. "Power Factor Correction Application Based on Independent Double-Boost Interleaved Converter (IDBIC)". Applied Sciences 12, nr 14 (18.07.2022): 7209. http://dx.doi.org/10.3390/app12147209.
Pełny tekst źródłaBarui, T. K., S. Goswami i D. Mondal. "Design of Digitally Controlled DC-DC Boost Converter for the Operation in DC Microgrid". Journal of Engineering Sciences 7, nr 2 (2020): E7—E13. http://dx.doi.org/10.21272/jes.2020.7(2).e2.
Pełny tekst źródłaVijayalakshmi, K., i Chinnapettai Ramalingam Balamurugan. "Z–Source Multilevel Inverter Based on Embedded Controller". Indonesian Journal of Electrical Engineering and Computer Science 6, nr 1 (1.04.2017): 1. http://dx.doi.org/10.11591/ijeecs.v6.i1.pp1-8.
Pełny tekst źródłaRoomi, Muhammad M. "An Overview of Carrier-based Modulation Methods for Z-Source Inverter". Power Electronics and Drives 4, nr 1 (1.06.2019): 15–31. http://dx.doi.org/10.2478/pead-2019-0007.
Pełny tekst źródłaChaturvedi, Shivam, Mengqi Wang, Yaoyu Fan, Deepak Fulwani, Guilherme Vieira Hollweg, Shahid Aziz Khan i Wencong Su. "Control Methodologies to Mitigate and Regulate Second-Order Ripples in DC–AC Conversions and Microgrids: A Brief Review". Energies 16, nr 2 (10.01.2023): 817. http://dx.doi.org/10.3390/en16020817.
Pełny tekst źródłaPiao, Longjian, Laurens de Vries, Mathijs de Weerdt i Neil Yorke-Smith. "Electricity Markets for DC Distribution Systems: Design Options". Energies 12, nr 14 (10.07.2019): 2640. http://dx.doi.org/10.3390/en12142640.
Pełny tekst źródłaRazzaq, Syed Abdul, i Vairavasamy Jayasankar. "Autonomous power sharing for AC/DC HMGS using decentralized modified droop method for interlinking converter". International Journal of Power Electronics and Drive Systems (IJPEDS) 13, nr 4 (1.12.2022): 2139. http://dx.doi.org/10.11591/ijpeds.v13.i4.pp2139-2147.
Pełny tekst źródłaJohar, Harminder Singh, Abhijit Bhattacharyya i Srinivas Rao S. "Fault Tolerant Power Supply for Aircraft Store Interface". Defence Science Journal 72, nr 5 (1.11.2022): 679–86. http://dx.doi.org/10.14429/dsj.72.17737.
Pełny tekst źródłaOthee, Avpreet, James Cale, Arthur Santos, Stephen Frank, Daniel Zimmerle, Omkar Ghatpande, Gerald Duggan i Daniel Gerber. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings". Energies 16, nr 7 (25.03.2023): 3001. http://dx.doi.org/10.3390/en16073001.
Pełny tekst źródłaRozprawy doktorskie na temat "DC-AC CONVERSIONS"
Wang, Kunrong. "High-Frequency Quasi-Single-Stage (QSS) Isolated AC-DC and DC-AC Power Conversion". Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29394.
Pełny tekst źródłaPh. D.
McClure, Morgan Taylor. "A Modular Architecture for DC-AC Conversion". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1340812711.
Pełny tekst źródłaSteckler, Pierre-Baptiste. "Contribution à la conversion AC/DC en Haute Tension". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI075.
Pełny tekst źródłaAs Alternating Current (AC) is well suited for most of the production, transmission, and distribution applications, its massive use is easy to understand. However, for over a century, the benefits of High Voltage Direct Current (HVDC) for long-distance energy transmission are well known. To connect both, AC/DC converters are mandatory, whose nature evolves with technological progress. After the problematic induced by HVDC on AC/DC converters is presented, this manuscript is focused on three topologies: Modular Multilevel Converter (MMC), Alternate Arm Converter (AAC) and Series Bridge Converter (SBC). They are presented, sized, analyzed thoroughly, and compared in quantitative terms, using original key performance indicators. It appears that MMC and SBC are particularly promising. The conventional control method of the MMC is then presented, and its structural properties are highlighted. A first original control law is presented, with similar performances but less complexity than the state-of-the-art. A second control law, non-linear and based on differential flatness theory, is introduced. It allows a very fast power tracking response while ensuring the global exponential stability of the system. These control laws are tested in simulation, using an average model and a detailed model with 180 sub-modules per arm. The last part is dedicated to the SBC. After a modeling step, some results regarding its structural analysis are presented, and an original control law is introduced. The essential role of the transformer for series converters like the SBC is highlighted. Finally, the performance of the proposed control law is assessed in simulation
Liang, Chenchen. "Contribution à l'étude d'une chaîne de conversion d'énergie AC-DC / DC-DC tolérantes aux défauts". Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4080/document.
Pełny tekst źródłaTo answer the context of marine renewable energy exploitation where the access of energy production system is difficult, this thesis deals with the study of a fault tolerant energy conversion chain. Three aspects are investigated: behavior analysis of the topology; output power control; detection and location of faults. The chain involves a five-phase PMSG, a five-leg diode rectifier and a three-interleaved DC-DC Boost converter. Concerning the output power control strategy, a double-loop control is applied on the DC-DC block. Small-signal dynamic models are established. The inner loop is used for controlling the input current of the Boost stage. The outer loop is for the output power. Three types of current controllers are studied and compared. Methods of synchronization for the three-interleaved Boost converter control are proposed. It results that the nonlinear controller, called in French version, the MRC, totally satisfies the desired performances. The control of power, which is then used for the full conversion chain, is tested under different operating modes (health and fault) and is of high performances. Several methods for detecting and locating rectifier’s AC and DC side faults have been developed. Based on the measurements of phase currents or the measurement of the output voltage of the rectifier, AC side faults can be detected and located. DC measurement based fault detection is of low complexity. This method is then extended to the faults of DC-DC block by using its input current
Chen, Weilun Warren. "Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder". DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6905.
Pełny tekst źródłaAl-Mothafar, M. R. D. "High frequency inverter-cycloconverter system for DC to AC conversion". Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378135.
Pełny tekst źródłaBelkacem, Faraheddine. "Contribution à la commande des convertisseurs DC-AC alimentés par un panneau photovoltïque". Amiens, 2006. http://www.theses.fr/2006AMIE0618.
Pełny tekst źródłaGrant, David. "High power density AC to DC conversion with reduced input current harmonics". Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3906.
Pełny tekst źródłaLopez, Santos Oswaldo. "Contribution to the DC-AC conversion in photovoltaic systems : Module oriented converters". Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0001/document.
Pełny tekst źródłaThese last years, a growing interest in power electronic systems has been motivated by the emergence of distributed renewable energy resources and their interconnection with the grid. In this context, the need of low power topologies fed by a few photovoltaic modules avoiding the use of transformers opens the study of special converters and the associated control strategies ensuring stability, reliability and high efficiency. A resulted generic device known in the commercial and scientific literature as “microinverter” or “module integrated converter” performs a plug and play product together with the PV module called an “AC module”.This work is devoted to the study of a transformer-less single-phase double-stage grid-connected microinverter. The proposed topology has a non-isolated high-gain boost type DC-DC converter and a non-isolated buck type DC-AC converter connected in cascade through a DC bus. The DC-DC converter permanently extracts the maximum power of the PV module ensuring at the same time a good performance coping with power changes introduced by the change in the environmental conditions. The DC-AC stage injects the power extracted by the DC-DC stage into the grid ensuring a high level of power quality. The research efforts focus on the involved control functions based on the sliding mode control theory, which leads to a simple implementation with a comprehensive theoretical description validated through simulation and experimental results.After giving the state-of-the-art in the first chapter, the manuscript is divided into four chapters, which are dedicated to the Maximum Power Point Tracking (MPPT), the DC-DC stage and its control, the DC-AC stage and its control and the complete microinverter. A new Extremum Seeking Control (ESC) MPPT algorithm is proposed. The single-switch quadratic boost converter is studied operating as a Loss-Free-Resistor (LFR) obtaining a high DC output voltage level with a safe operation. The full-bridge converter is controlled as a Power Source Inverter (PSI) using a simple sliding-mode based tracking law, regulating the voltage of the DC bus and then ensuring a high power quality level in the grid connection. Finally, the three building blocks are merged to obtain a sliding mode controlled microinverter constituting the main result and contribution of the work
Song, Yu Jin. "Analysis and design of high frequency link power conversion systems for fuel cell power conditioning". Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2678.
Pełny tekst źródłaKsiążki na temat "DC-AC CONVERSIONS"
Séguier, Guy. Power Electronic Converters: DC-AC Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Znajdź pełny tekst źródłaSéguier, Guy. Power electronic converters: DC-AC conversion. Berlin: Springer-Verlag, 1993.
Znajdź pełny tekst źródłaSéguier, Guy. Power electronic converters: AC-DC conversion. New York: McGraw-Hill, 1986.
Znajdź pełny tekst źródłaSeguier, Guy. Power electronic converters: AC-DC conversion. London: North Oxford Academic, 1986.
Znajdź pełny tekst źródłaKaramat, Asghar. High frequency inverter-transformer-cycloconverter system for DC to AC (3-phase) power conversion. Uxbridge: Brunel University, 1991.
Znajdź pełny tekst źródłaProhorov, Viktor. Semiconductor converters of electrical energy. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1019082.
Pełny tekst źródłaPower Electronics and Energy Conversion Systems, AC / DC and DC / AC Power Conversion. Wiley & Sons, Incorporated, John, 2021.
Znajdź pełny tekst źródłaWolf, E. L. Energy Storage, Distribution, Use and Climate Impact. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0011.
Pełny tekst źródłaCzęści książek na temat "DC-AC CONVERSIONS"
Arrillaga, Jos, Bruce C. Smith, Neville R. Watson i Alan R. Wood. "AC-DC Conversion-Frequency Domain". W Power System Harmonic Analysis, 133–71. West Sussex, England: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118878316.ch5.
Pełny tekst źródłaArrillaga, Jos, Bruce C. Smith, Neville R. Watson i Alan R. Wood. "AC-DC Conversion-Harmonic Domain". W Power System Harmonic Analysis, 223–40. West Sussex, England: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118878316.ch8.
Pełny tekst źródłaIkegawa, S., T. Honda, H. Ikeda, A. Maeda, H. Takagi, S. Uchida, K. Uchinokura i S. Tanaka. "AC-DC Conversion Effect in Ceramic Superconductor". W Advances in Superconductivity, 743–48. Tokyo: Springer Japan, 1989. http://dx.doi.org/10.1007/978-4-431-68084-0_126.
Pełny tekst źródłaSaha, Jaydeep. "Three-Phase Matrix-Based Isolated AC-DC Conversion". W Springer Theses, 187–215. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4902-9_6.
Pełny tekst źródłaZhang, Chenghui, Le Chang i Cheng Fu. "Variable Gain Control of Three-Phase AC/DC Power Converters". W Variable Gain Control and Its Applications in Energy Conversion, 125–36. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003392927-11.
Pełny tekst źródłaAnusha, H., i S. B. Naveen Kumar. "Bidirectional Power Conversion by DC–AC Converter with Active Clamp Circuit". W Lecture Notes in Electrical Engineering, 1283–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5802-9_109.
Pełny tekst źródłaZhang, Xin, Fanfan Lin, Hao Ma, Bin Zhao i Jingjing Huang. "Multi-time Scale Frequency Regulation of a General Resonant DC Transformer in Hybrid AC/DC Microgrid". W Holistic Design of Resonant DC Transformer on Constant Voltage Conversion, Cascaded Stability and High Efficiency, 211–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9115-8_8.
Pełny tekst źródłaRuan, Xinbo, Wu Chen, Tianzhi Fang, Kai Zhuang, Tao Zhang i Hong Yan. "A General Control Strategy for DC–AC Series–Parallel Power Conversion Systems". W CPSS Power Electronics Series, 107–19. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2760-5_5.
Pełny tekst źródłaZhang, Xin, Fanfan Lin, Hao Ma, Bin Zhao i Jingjing Huang. "The Proposed Robust Circuit Parameters Design for the CLLC-Type DC Transformer in the Hybrid AC/DC Microgrid". W Holistic Design of Resonant DC Transformer on Constant Voltage Conversion, Cascaded Stability and High Efficiency, 11–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9115-8_2.
Pełny tekst źródłaRafi, Shaik, Simhadri Lakshmi Sirisha i Ravipati Srikanth. "A Hybrid Power Conversion System Using Three-Phase Single-Stage DC–AC Converter". W Lecture Notes in Electrical Engineering, 243–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2256-7_24.
Pełny tekst źródłaStreszczenia konferencji na temat "DC-AC CONVERSIONS"
Sreeram, K. "Universal matrix converter for AC and DC power conversions". W 2017 IEEE International Conference on Circuits and Systems (ICCS). IEEE, 2017. http://dx.doi.org/10.1109/iccs1.2017.8326029.
Pełny tekst źródłaReddy, P. P., i D. Lee. "Simplifying SCR to AC Rig Conversions to Deploy Digital and Automated Drilling Technologies". W SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214555-ms.
Pełny tekst źródłaHashim, Hazem, i Asmarashid Ponniran. "Optimization of Wireless Power Transfer Configuration for High Efficiency Achievement". W Conference on Faculty Electric and Electronic 2020/1. Penerbit UTHM, 2020. http://dx.doi.org/10.30880/eeee.2020.01.01.010.
Pełny tekst źródłaSu, Mei, Ziyi Zhao, Qi Zhu i Hanbing Dan. "A converter based on energy injection control for AC-AC, AC-DC, DC-DC, DC-AC conversion". W 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018. http://dx.doi.org/10.1109/iciea.2018.8397927.
Pełny tekst źródła"Session 28 AC-DC conversion". W 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. IEEE, 2008. http://dx.doi.org/10.1109/apec.2008.4522675.
Pełny tekst źródłaTurki, Hedia, i Mohamed Elleuch. "Transformer modeling suitable for DC/AC and AC/DC conversion chains". W 2014 11th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2014. http://dx.doi.org/10.1109/ssd.2014.6808835.
Pełny tekst źródłaMitsumoto, Yuta, Norihiro Kose i Tsuguhiko Nakagawa. "High Rate Interactive Energy System Through the Use of PV and EV". W ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98137.
Pełny tekst źródłaFelinto, Alan S., Cursino B. Jacobina, Edgard L. L. Fabricio i Rodrigo P. de Lacerda. "Single DC-Link Three-phase AC-DC-AC Converter With Shared Legs". W 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecce.2019.8912998.
Pełny tekst źródłaZhang, Jianwei, Li Li, Tingting He, Mahlagha Mahdavi Aghdam i David G. Dorrell. "Investigation of direct matrix converter working as a versatile converter (AC/AC, AC/DC, DC/AC, DC/DC conversion) with predictive control". W IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017. http://dx.doi.org/10.1109/iecon.2017.8216800.
Pełny tekst źródłaRodrigues, Phelipe L. S., Cursino B. Jacobina i Antonio M. N. Lima. "Multilevel Single-Phase Four-Leg AC-DC-AC Converter". W 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020. http://dx.doi.org/10.1109/ecce44975.2020.9236315.
Pełny tekst źródła