Artykuły w czasopismach na temat „Data-efficient Deep Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Data-efficient Deep Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chaudhary, Dr Sumit, Ms Neha Singh i Salaiya Pankaj. "Time-Efficient Algorithm for Data Annotation using Deep Learning". Indian Journal of Artificial Intelligence and Neural Networking 2, nr 5 (30.08.2022): 8–11. http://dx.doi.org/10.54105/ijainn.e1058.082522.
Pełny tekst źródłaBiswas, Surojit, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt i George M. Church. "Low-N protein engineering with data-efficient deep learning". Nature Methods 18, nr 4 (kwiecień 2021): 389–96. http://dx.doi.org/10.1038/s41592-021-01100-y.
Pełny tekst źródłaEdstrom, Jonathon, Yifu Gong, Dongliang Chen, Jinhui Wang i Na Gong. "Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning". IEEE Transactions on Circuits and Systems II: Express Briefs 64, nr 12 (grudzień 2017): 1412–16. http://dx.doi.org/10.1109/tcsii.2017.2767900.
Pełny tekst źródłaFeng, Wenhui, Chongzhao Han, Feng Lian i Xia Liu. "A Data-Efficient Training Method for Deep Reinforcement Learning". Electronics 11, nr 24 (16.12.2022): 4205. http://dx.doi.org/10.3390/electronics11244205.
Pełny tekst źródłaHu, Wenjin, Feng Liu i Jiebo Peng. "An Efficient Data Classification Decision Based on Multimodel Deep Learning". Computational Intelligence and Neuroscience 2022 (4.05.2022): 1–10. http://dx.doi.org/10.1155/2022/7636705.
Pełny tekst źródłaMairittha, Nattaya, Tittaya Mairittha i Sozo Inoue. "On-Device Deep Learning Inference for Efficient Activity Data Collection". Sensors 19, nr 15 (5.08.2019): 3434. http://dx.doi.org/10.3390/s19153434.
Pełny tekst źródłaDuan, Yanjie, Yisheng Lv, Yu-Liang Liu i Fei-Yue Wang. "An efficient realization of deep learning for traffic data imputation". Transportation Research Part C: Emerging Technologies 72 (listopad 2016): 168–81. http://dx.doi.org/10.1016/j.trc.2016.09.015.
Pełny tekst źródłaSashank, Madipally Sai Krishna, Vijay Souri Maddila, Vikas Boddu i Y. Radhika. "Efficient deep learning based data augmentation techniques for enhanced learning on inadequate medical imaging data". ACTA IMEKO 11, nr 1 (31.03.2022): 6. http://dx.doi.org/10.21014/acta_imeko.v11i1.1226.
Pełny tekst źródłaPetrovic, Nenad, i Djordje Kocic. "Data-driven framework for energy-efficient smart cities". Serbian Journal of Electrical Engineering 17, nr 1 (2020): 41–63. http://dx.doi.org/10.2298/sjee2001041p.
Pełny tekst źródłaYue, Yang, Bingyi Kang, Zhongwen Xu, Gao Huang i Shuicheng Yan. "Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 9 (26.06.2023): 11069–77. http://dx.doi.org/10.1609/aaai.v37i9.26311.
Pełny tekst źródłaShin, Hyunkyung, Hyeonung Shin, Wonje Choi, Jaesung Park, Minjae Park, Euiyul Koh i Honguk Woo. "Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions". Applied Sciences 12, nr 14 (21.07.2022): 7317. http://dx.doi.org/10.3390/app12147317.
Pełny tekst źródłaLyu, Daoming, Fangkai Yang, Bo Liu i Steven Gustafson. "SDRL: Interpretable and Data-Efficient Deep Reinforcement Learning Leveraging Symbolic Planning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 2970–77. http://dx.doi.org/10.1609/aaai.v33i01.33012970.
Pełny tekst źródłada Silva Lourenço, Catarina, Marleen C. Tjepkema-Cloostermans i Michel J. A. M. van Putten. "Efficient use of clinical EEG data for deep learning in epilepsy". Clinical Neurophysiology 132, nr 6 (czerwiec 2021): 1234–40. http://dx.doi.org/10.1016/j.clinph.2021.01.035.
Pełny tekst źródłaCuayáhuitl, Heriberto. "A data-efficient deep learning approach for deployable multimodal social robots". Neurocomputing 396 (lipiec 2020): 587–98. http://dx.doi.org/10.1016/j.neucom.2018.09.104.
Pełny tekst źródłaZhao, Junhui, Yiwen Nie, Shanjin Ni i Xiaoke Sun. "Traffic Data Imputation and Prediction: An Efficient Realization of Deep Learning". IEEE Access 8 (2020): 46713–22. http://dx.doi.org/10.1109/access.2020.2978530.
Pełny tekst źródłaTovar, Nathaniel, Sean (Seok-Chul) Kwon i Jinseong Jeong. "Image Upscaling with Deep Machine Learning for Energy-Efficient Data Communications". Electronics 12, nr 3 (30.01.2023): 689. http://dx.doi.org/10.3390/electronics12030689.
Pełny tekst źródłaLi, Mengkun, i Yongjian Wang. "An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data". Wireless Communications and Mobile Computing 2020 (16.12.2020): 1–11. http://dx.doi.org/10.1155/2020/6661022.
Pełny tekst źródłaYuan, Mu, Lan Zhang, Xiang-Yang Li, Lin-Zhuo Yang i Hui Xiong. "Adaptive Model Scheduling for Resource-efficient Data Labeling". ACM Transactions on Knowledge Discovery from Data 16, nr 4 (31.08.2022): 1–22. http://dx.doi.org/10.1145/3494559.
Pełny tekst źródłaOnofrey, John A., Lawrence H. Staib, Xiaojie Huang, Fan Zhang, Xenophon Papademetris, Dimitris Metaxas, Daniel Rueckert i James S. Duncan. "Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation". Annual Review of Biomedical Engineering 22, nr 1 (4.06.2020): 127–53. http://dx.doi.org/10.1146/annurev-bioeng-060418-052147.
Pełny tekst źródłaBhat, Sanjit, David Lu, Albert Kwon i Srinivas Devadas. "Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning". Proceedings on Privacy Enhancing Technologies 2019, nr 4 (1.10.2019): 292–310. http://dx.doi.org/10.2478/popets-2019-0070.
Pełny tekst źródłaWang, Yang, Yutong Li, Ting Wang i Gang Liu. "Towards an energy-efficient Data Center Network based on deep reinforcement learning". Computer Networks 210 (czerwiec 2022): 108939. http://dx.doi.org/10.1016/j.comnet.2022.108939.
Pełny tekst źródłaShiloh, Lihi, Avishay Eyal i Raja Giryes. "Efficient Processing of Distributed Acoustic Sensing Data Using a Deep Learning Approach". Journal of Lightwave Technology 37, nr 18 (15.09.2019): 4755–62. http://dx.doi.org/10.1109/jlt.2019.2919713.
Pełny tekst źródłaYi, Deliang, Xin Zhou, Yonggang Wen i Rui Tan. "Efficient Compute-Intensive Job Allocation in Data Centers via Deep Reinforcement Learning". IEEE Transactions on Parallel and Distributed Systems 31, nr 6 (1.06.2020): 1474–85. http://dx.doi.org/10.1109/tpds.2020.2968427.
Pełny tekst źródłaJeong, Seunghwan, Gwangpyo Yoo, Minjong Yoo, Ikjun Yeom i Honguk Woo. "Resource-Efficient Sensor Data Management for Autonomous Systems Using Deep Reinforcement Learning". Sensors 19, nr 20 (11.10.2019): 4410. http://dx.doi.org/10.3390/s19204410.
Pełny tekst źródłaHe, Yan, Bin Fu, Jian Yu, Renfa Li i Rucheng Jiang. "Efficient Learning of Healthcare Data from IoT Devices by Edge Convolution Neural Networks". Applied Sciences 10, nr 24 (15.12.2020): 8934. http://dx.doi.org/10.3390/app10248934.
Pełny tekst źródłaWu, Chunyi, i Ya Li. "FLOM: Toward Efficient Task Processing in Big Data with Federated Learning". Security and Communication Networks 2022 (27.01.2022): 1–16. http://dx.doi.org/10.1155/2022/5277362.
Pełny tekst źródłaZhang, Lan, Yu Feng Nie i Zhen Hai Wang. "Image De-Noising Using Deep Learning". Applied Mechanics and Materials 641-642 (wrzesień 2014): 1287–90. http://dx.doi.org/10.4028/www.scientific.net/amm.641-642.1287.
Pełny tekst źródłaSalakhutdinov, Ruslan, i Geoffrey Hinton. "An Efficient Learning Procedure for Deep Boltzmann Machines". Neural Computation 24, nr 8 (sierpień 2012): 1967–2006. http://dx.doi.org/10.1162/neco_a_00311.
Pełny tekst źródłaRen, Jing, Xishi Huang i Raymond N. Huang. "Efficient Deep Reinforcement Learning for Optimal Path Planning". Electronics 11, nr 21 (7.11.2022): 3628. http://dx.doi.org/10.3390/electronics11213628.
Pełny tekst źródłaBlank, Andreas, Lukas Baier, Oguz Kedilioglu, Xuebei Zhu, Maximilian Metzner i Jörg Franke. "Effiziente KI-Adaption durch synthetische Daten/Efficient AI Adaption using Synthetic Data". wt Werkstattstechnik online 111, nr 10 (2021): 759–62. http://dx.doi.org/10.37544/1436-4980-2021-10-105.
Pełny tekst źródłaHao, Ruqian, Lin Liu, Jing Zhang, Xiangzhou Wang, Juanxiu Liu, Xiaohui Du, Wen He, Jicheng Liao, Lu Liu i Yuanying Mao. "A Data-Efficient Framework for the Identification of Vaginitis Based on Deep Learning". Journal of Healthcare Engineering 2022 (27.02.2022): 1–11. http://dx.doi.org/10.1155/2022/1929371.
Pełny tekst źródłaEide, Siri S., Michael A. Riegler, Hugo L. Hammer i John Bjørnar Bremnes. "Deep Tower Networks for Efficient Temperature Forecasting from Multiple Data Sources". Sensors 22, nr 7 (6.04.2022): 2802. http://dx.doi.org/10.3390/s22072802.
Pełny tekst źródłaShin, Tae-Ho, i Soo-Hyung Kim. "Utility Analysis about Log Data Anomaly Detection Based on Federated Learning". Applied Sciences 13, nr 7 (1.04.2023): 4495. http://dx.doi.org/10.3390/app13074495.
Pełny tekst źródłaMoss, Adam. "Accelerated Bayesian inference using deep learning". Monthly Notices of the Royal Astronomical Society 496, nr 1 (28.05.2020): 328–38. http://dx.doi.org/10.1093/mnras/staa1469.
Pełny tekst źródłaVengateshwaran, Mr M. "Efficient Deep Learning Approach for Dimensionality Reduction using Micro blogs from Big data". International Journal for Research in Applied Science and Engineering Technology V, nr III (9.03.2017): 5–10. http://dx.doi.org/10.22214/ijraset.2017.3002.
Pełny tekst źródłaKhodaparast, Seyed Saeed, Xiao Lu, Ping Wang i Uyen Trang Nguyen. "Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks". IEEE Open Journal of Vehicular Technology 2 (2021): 249–60. http://dx.doi.org/10.1109/ojvt.2021.3085421.
Pełny tekst źródłaJiang, Rong, Zhipeng Wang, Bin He, Yanmin Zhou, Gang Li i Zhongpan Zhu. "A data-efficient goal-directed deep reinforcement learning method for robot visuomotor skill". Neurocomputing 462 (październik 2021): 389–401. http://dx.doi.org/10.1016/j.neucom.2021.08.023.
Pełny tekst źródłaNAMOZOV, A., i Y. I. CHO. "An Efficient Deep Learning Algorithm for Fire and Smoke Detection with Limited Data". Advances in Electrical and Computer Engineering 18, nr 4 (2018): 121–28. http://dx.doi.org/10.4316/aece.2018.04015.
Pełny tekst źródłaHassan, Mohammad Mehedi, Abdu Gumaei, Ahmed Alsanad, Majed Alrubaian i Giancarlo Fortino. "A hybrid deep learning model for efficient intrusion detection in big data environment". Information Sciences 513 (marzec 2020): 386–96. http://dx.doi.org/10.1016/j.ins.2019.10.069.
Pełny tekst źródłaEshghi, Mohammad, Alireza Souri, Babak Majidi i Amin Fadaeddini. "Data augmentation using fast converging CIELAB-GAN for efficient deep learning dataset generation". International Journal of Computational Science and Engineering 26, nr 4 (2023): 459–69. http://dx.doi.org/10.1504/ijcse.2023.10057257.
Pełny tekst źródłaFadaeddini, Amin, Babak Majidi, Alireza Souri i Mohammad Eshghi. "Data augmentation using fast converging CIELAB-GAN for efficient deep learning dataset generation". International Journal of Computational Science and Engineering 26, nr 4 (2023): 459–69. http://dx.doi.org/10.1504/ijcse.2023.132152.
Pełny tekst źródłaWei, Shengyun, Zhaolong Sun, Zhenyi Wang, Feifan Liao, Zhen Li i Haibo Mi. "An Efficient Data Augmentation Method for Automatic Modulation Recognition from Low-Data Imbalanced-Class Regime". Applied Sciences 13, nr 5 (1.03.2023): 3177. http://dx.doi.org/10.3390/app13053177.
Pełny tekst źródłaXu, Wencai. "Efficient Distributed Image Recognition Algorithm of Deep Learning Framework TensorFlow". Journal of Physics: Conference Series 2066, nr 1 (1.11.2021): 012070. http://dx.doi.org/10.1088/1742-6596/2066/1/012070.
Pełny tekst źródłaEltehewy, Rokaya, Ahmed Abouelfarag i Sherine Nagy Saleh. "Efficient Classification of Imbalanced Natural Disasters Data Using Generative Adversarial Networks for Data Augmentation". ISPRS International Journal of Geo-Information 12, nr 6 (17.06.2023): 245. http://dx.doi.org/10.3390/ijgi12060245.
Pełny tekst źródłaRix, Tom, Kris K. Dreher, Jan-Hinrich Nölke, Melanie Schellenberg, Minu D. Tizabi, Alexander Seitel i Lena Maier-Hein. "Efficient Photoacoustic Image Synthesis with Deep Learning". Sensors 23, nr 16 (10.08.2023): 7085. http://dx.doi.org/10.3390/s23167085.
Pełny tekst źródłaAyad, Hayder, Ikhlas Watan Ghindawi i Mustafa Salam Kadhm. "Lung Segmentation Using Proposed Deep Learning Architecture". International Journal of Online and Biomedical Engineering (iJOE) 16, nr 15 (15.12.2020): 141. http://dx.doi.org/10.3991/ijoe.v16i15.17115.
Pełny tekst źródłaKumar, Ravinder, i Lokesh Kumar Shrivastav. "Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis". Journal of Information Technology Research 15, nr 1 (styczeń 2022): 1–20. http://dx.doi.org/10.4018/jitr.2022010101.
Pełny tekst źródłaPolanski, Jaroslaw. "Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry". International Journal of Molecular Sciences 23, nr 5 (3.03.2022): 2797. http://dx.doi.org/10.3390/ijms23052797.
Pełny tekst źródłaIstiaque, Shah Md, Asif Iqbal Khan i Sajjad Waheed. "Smart Intrusion Detection System Comprised of Machine Learning and Deep Learning". European Journal of Engineering Research and Science 5, nr 10 (8.10.2020): 1168–73. http://dx.doi.org/10.24018/ejers.2020.5.10.2128.
Pełny tekst źródłaIstiaque, Shah Md, Asif Iqbal Khan i Sajjad Waheed. "Smart Intrusion Detection System Comprised of Machine Learning and Deep Learning". European Journal of Engineering and Technology Research 5, nr 10 (8.10.2020): 1168–73. http://dx.doi.org/10.24018/ejeng.2020.5.10.2128.
Pełny tekst źródła