Rozprawy doktorskie na temat „Data Classification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Data Classification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Morshedzadeh, Iman. "Data Classification in Product Data Management". Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14651.
Pełny tekst źródłaCurrie, Sheila. "Data classification for choropleth mapping". Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/5725.
Pełny tekst źródłaGómez, Juan Martínez. "Automatic classification of neural data". Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9696.
Pełny tekst źródłaPötzelberger, Klaus, i Helmut Strasser. "Data Compression by Unsupervised Classification". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1997. http://epub.wu.ac.at/974/1/document.pdf.
Pełny tekst źródłaSeries: Forschungsberichte / Institut für Statistik
Soukhoroukova, Nadejda. "Data classification through nonsmooth optimization". Thesis, University of Ballarat [Mt. Helen, Vic.] :, 2003. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/42220.
Pełny tekst źródłaKröger, Viktor. "Classification in Functional Data Analysis : Applications on Motion Data". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184963.
Pełny tekst źródłaFrämre korsbandsskador är vanliga och välkända skador, speciellt bland idrottsutövare. Skadornakräver ofta operationer och långa rehabiliteringsprogram, och kan leda till funktionell nedsättningoch återskador (Marshall et al., 1977). Målet med det här arbetet är att utforska möjligheten attklassificera knän utifrån funktionalitet, där utfallet är känt. Detta genom att använda olika typerav modeller, och genom att testa olika indelningar av grupper. Datat som används är insamlatunder ett prestandatest, där personer hoppat på ett ben med rörelsesensorer på kroppen. Deninsamlade datan representerar position över tid, och betraktas som funktionell data.Med funktionell dataanalys (FDA) kan en process analyseras som en kontinuerlig funktion av tid,istället för att reduceras till ett ändligt antal datapunkter. FDA innehåller många användbaraverktyg, men även utmaningar. En funktionell observation kan till exempel deriveras, ett händigtverktyg som inte återfinns i den multivariata verktygslådan. Hastigheten och accelerationen kandå beräknas utifrån den insamlade datan. Hur "likhet" är definierat, å andra sidan, är inte likauppenbart som med punkt-data. I det här arbetet används FDA för att klassificera knärörelsedatafrån en långtidsuppföljningsstudie av främre korsbandsskador.I detta arbete studeras både funktionella kärnklassificerare och k-närmsta grannar-metoder, och ut-för signifikanstest av modellträffsäkerheten genom omprovtagning. Vidare kan modellerna urskiljaolika egenskaper i datat, beroende på hur närhet definieras. Ensemblemetoder används i ett försökatt nyttja mer av informationen, men lyckas inte överträffa någon av de enskilda modellerna somutgör ensemblen. Vidare så visas också att klassificering på optimerade deldefinitionsmängder kange en högre förklaringskraft än klassificerare som använder hela definitionsmängden.
Lan, Liang. "Data Mining Algorithms for Classification of Complex Biomedical Data". Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/214773.
Pełny tekst źródłaPh.D.
In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray classification, samples belong to several predefined categories (e.g., cancer vs. control tissues) and the goal is to build a predictor that classifies a new tissue sample based on its microarray measurements. When faced with the small-sample high-dimensional microarray data, most machine learning algorithm would produce an overly complicated model that performs well on training data but poorly on new data. To reduce the risk of over-fitting, feature selection becomes an essential technique in microarray classification. However, standard feature selection algorithms are bound to underperform when the size of the microarray data is particularly small. The best remedy is to borrow strength from external microarray datasets. In this dissertation, I will present two new multi-task feature filter methods which can improve the classification performance by utilizing the external microarray data. The first method is to aggregate the feature selection results from multiple microarray classification tasks. The resulting multi-task feature selection can be shown to improve quality of the selected features and lead to higher classification accuracy. The second method jointly selects a small gene set with maximal discriminative power and minimal redundancy across multiple classification tasks by solving an objective function with integer constraints. In protein function prediction problem, gene functions are predicted from a predefined set of possible functions (e.g., the functions defined in the Gene Ontology). Gene function prediction is a complex classification problem characterized by the following aspects: (1) a single gene may have multiple functions; (2) the functions are organized in hierarchy; (3) unbalanced training data for each function (much less positive than negative examples); (4) missing class labels; (5) availability of multiple biological data sources, such as microarray data, genome sequence and protein-protein interactions. As participants in the 2011 Critical Assessment of Function Annotation (CAFA) challenge, our team achieved the highest AUC accuracy among 45 groups. In the competition, we gained by focusing on the 5-th aspect of the problem. Thus, in this dissertation, I will discuss several schemes to integrate the prediction scores from multiple data sources and show their results. Interestingly, the experimental results show that a simple averaging integration method is competitive with other state-of-the-art data integration methods. Original spatial scan algorithm is used for detection of spatial overdensities: discovery of spatial subregions with significantly higher scores according to some density measure. This algorithm is widely used in identifying cluster of disease cases (e.g., identifying environmental risk factors for child leukemia). However, the original spatial scan algorithm only works on static spatial data. In this dissertation, I will propose one possible solution for spatial scan on movement data.
Temple University--Theses
Lozano, Albalate Maria Teresa. "Data Reduction Techniques in Classification Processes". Doctoral thesis, Universitat Jaume I, 2007. http://hdl.handle.net/10803/10479.
Pełny tekst źródłaThe aim of any condensing technique is to obtain a reduced training set in order to spend as few time as possible in classification. All that without a significant loss in classification accuracy. Some
new approaches to training set size reduction based on prototypes are presented. These schemes basically consist of defining a small number of prototypes that represent all the original instances. That includes those approaches that select among the already existing examples (selective condensing algorithms), and those which generate new representatives (adaptive condensing algorithms).
Those new reduction techniques are experimentally compared to some traditional ones, for data represented in feature spaces. In order to test them, the classical 1-NN rule is here applied. However, other classifiers (fast classifiers) have been considered here, as linear and quadratic ones constructed in dissimilarity spaces based on prototypes, in order to realize how editing and condensing concepts work for this different family of classifiers.
Although the goal of the algorithms proposed in this thesis is to obtain a strongly reduced set of representatives, the performance is empirically evaluated over eleven real data sets by comparing not only the reduction rate but also the classification accuracy with those of other condensing techniques. Therefore, the ultimate aim is not only to find a strongly reduced set, but also a balanced one.
Several ways to solve the same problem could be found. So, in the case of using a rule based on distance as a classifier, not only the option of reducing the training set can be afford. A different family of approaches consists of applying several searching methods. Therefore, results obtained by the use of the algorithms here presented are compared in terms of classification accuracy and time, to several efficient search techniques.
Finally, the main contributions of this PhD report could be briefly summarised in four principal points. Firstly, two selective algorithms based on the idea of surrounding neighbourhood. They obtain better results than other algorithms presented here, as well as better than other traditional schemes. Secondly, a generative approach based on mixtures of Gaussians. It presents better results in classification accuracy and size reduction than traditional adaptive algorithms, and similar to those of the LVQ. Thirdly, it is shown that classification rules other than the 1-NN can be used, even leading to better results. And finally, it is deduced from the experiments carried on, that with some databases (as the ones used here) the approaches here presented execute the classification processes in less time that the efficient search techniques.
Aygar, Alper. "Doppler Radar Data Processing And Classification". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609890/index.pdf.
Pełny tekst źródłaLee, Ho-Jin. "Functional data analysis: classification and regression". Texas A&M University, 2004. http://hdl.handle.net/1969.1/2805.
Pełny tekst źródłaFernandez, Noemi. "Statistical information processing for data classification". FIU Digital Commons, 1996. http://digitalcommons.fiu.edu/etd/3297.
Pełny tekst źródłaBocancea, Andreea. "Supervised Classification Leveraging Refined Unlabeled Data". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119320.
Pełny tekst źródłaLangdon, Matthew James. "Classification of images and censored data". Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434618.
Pełny tekst źródłaNUNES, BERNARDO PEREIRA. "AUTOMATIC CLASSIFICATION OF SEMI-STRUCTURED DATA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14382@1.
Pełny tekst źródłaO problema da classificação de dados remonta à criação de taxonomias visando cobrir áreas do conhecimento. Com o surgimento da Web, o volume de dados disponíveis aumentou várias ordens de magnitude, tornando praticamente impossível a organização de dados manualmente. Esta dissertação tem por objetivo organizar dados semi-estruturados, representados por frames, sem uma estrutura de classes prévia. A dissertação apresenta um algoritmo, baseado no K-Medóide, capaz de organizar um conjunto de frames em classes, estruturadas sob forma de uma hierarquia estrita. A classificação dos frames é feita a partir de um critério de proximidade que leva em conta os atributos e valores que cada frame possui.
The problem of data classification goes back to the definition of taxonomies covering knowledge areas. With the advent of the Web, the amount of data available has increased several orders of magnitude, making manual data classification impossible. This dissertation proposes a method to automatically classify semi-structured data, represented by frames, without any previous knowledge about structured classes. The dissertation introduces an algorithm, based on K-Medoid, capable of organizing a set of frames into classes, structured as a strict hierarchy. The classification of the frames is based on a closeness criterion that takes into account the attributes and their values in each frame.
Van, der Walt Christiaan Maarten. "Data measures that characterise classification problems". Diss., Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-08292008-162648/.
Pełny tekst źródłaPalm, Niklas. "Sentiment classification of Swedish Twitter data". Thesis, Uppsala universitet, Avdelningen för datalogi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388420.
Pełny tekst źródłaTziatzios, Achilleas. "Data mining of range-based classification rules for data characterization". Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/65902/.
Pełny tekst źródłaDavari, Mahdad. "Advances Towards Data-Race-Free Cache Coherence Through Data Classification". Doctoral thesis, Uppsala universitet, Avdelningen för datorteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320595.
Pełny tekst źródłaBetter, Marco L. "Data mining techniques for prediction and classification in discrete data applications". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3273688.
Pełny tekst źródłaTennant, Mark. "A parallel data stream classification technique for high velocity data streams". Thesis, University of Reading, 2018. http://centaur.reading.ac.uk/77919/.
Pełny tekst źródłaBotella, Pérez Cristina. "Multivariate classification of gene expression microarray data". Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/9046.
Pełny tekst źródłaHajimohammadi, Hamid Reza. "Classification of Data Series at Vehicle Detection". Thesis, Uppsala University, Department of Information Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-111163.
Pełny tekst źródłaThis paper purposes a new, simple and lightweight approach of previously studied algorithms that can be used for extracting of feature vectors that in turn enables one to classify a vehicle based on its magnetic signature shape.This algorithm is called ASWA that stands for Adaptive Spectral and Wavelet Analysis and it is a combination of features of a signal extracted by both of the spectral and wavelet analysis algorithms. The performance of classifiers using this feature vectors is compared to another feature vectors consisting of features extracted by Fourier transform and pattern information of the signal extracted by Hill-Pattern algorithm (CFTHP). By using ASWA-based feature vectors, there have been improvements in all of classification algorithms results such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Probabilistic Neural Networks (PNN). However, the best improvement rate achieved using an ASWA-Based feature vectors in K-NN algorithm. The correct rate of the classifier using CFTHP-based feature vectors was 39.82 %, which have improved to 69.93 % by using ASWA. This is corresponding an overall improvement by 76 % in correct classification rates.
Selmer, Oyvind, i Mikael Brevik. "Classification and Visualisation of Twitter Sentiment Data". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22967.
Pełny tekst źródłaGao, Ming. "A study on imbalanced data classification problems". Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602707.
Pełny tekst źródłaAcosta, Mena Dionisio M. "Statistical classification of magnetic resonance imaging data". Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390913.
Pełny tekst źródłaBerry, Ian Michael. "Data classification using unsupervised artificial neural networks". Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390079.
Pełny tekst źródłaHou, Jun. "Function Approximation and Classification with Perturbed Data". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618266875924225.
Pełny tekst źródłaAl-Madi, Naila Shikri. "Improved Genetic Programming Techniques For Data Classification". Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27097.
Pełny tekst źródłaVarnavas, Andreas Soteriou. "Signal processing methods for EEG data classification". Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11943.
Pełny tekst źródłaHyun, Jung Kim. "Classification in thoracic computed tomography image data". Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1383469071&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaLee, K. K. "Classification of imbalanced data with transparent kernels". Thesis, University of Southampton, 2002. https://eprints.soton.ac.uk/257937/.
Pełny tekst źródłaKazakeviciute, Agne. "Some theoretical essays on functional data classification". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1570359/.
Pełny tekst źródłaDEMNI, Houyem. "Depth-based classification approaches for directional data". Doctoral thesis, Università degli studi di Cassino, 2021. http://hdl.handle.net/11580/83781.
Pełny tekst źródłaPalanisamy, Senthil Kumar. "Association rule based classification". Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050306-131517/.
Pełny tekst źródłaKeywords: Itemset Pruning, Association Rules, Adaptive Minimal Support, Associative Classification, Classification. Includes bibliographical references (p.70-74).
Chan, Wing-yan Sarah, i 陳詠欣. "Emerging substrings for sequence classification". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B2971672X.
Pełny tekst źródłaRamaboa, Kutlwano K. K. M. "A comparative evaluation of data mining classification techniques on medical trauma data". Master's thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/5973.
Pełny tekst źródłaThe purpose of this research was to determine the extent to which a selection of data mining classification techniques (specifically, Discriminant Analysis, Decision Trees, and three artifical neural network models - Backpropogation, Probablilistic Neural Networks, and the Radial Basis Function) are able to correctly classify cases into the different categories of an outcome measure from a given set of input variables (i.e. estimate their classification accuracy) on a common database.
Lundgren, Andreas. "Data-Driven Engine Fault Classification and Severity Estimation Using Residuals and Data". Thesis, Linköpings universitet, Fordonssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165736.
Pełny tekst źródłaPruengkarn, Ratchakoon. "Enhancing classification performance by handling noise and imbalanced data with fuzzy classification techniques". Thesis, Pruengkarn, Ratchakoon (2018) Enhancing classification performance by handling noise and imbalanced data with fuzzy classification techniques. PhD thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/42505/.
Pełny tekst źródłaKlose, Aljoscha Alexander. "Partially supervised learning of fuzzy classification rules". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971682364.
Pełny tekst źródłaPhillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Pełny tekst źródłaPh. D.
Bressan, Marco José Miguel. "Statistical Independence for classification for High Dimensional Data". Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/3034.
Pełny tekst źródłaRöder, Tido. "Similarity, retrieval, and classification of motion capture data". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983632332.
Pełny tekst źródłaCho, Hansang. "Classification of functional brain data for multimedia retrieval /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/5892.
Pełny tekst źródłaBrandin, Martin, i Roger Hamrén. "Classification of Ground Objects Using Laser Radar Data". Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1572.
Pełny tekst źródłaAccurate 3D models of natural environments are important for many modelling and simulation applications, for both civilian and military purposes. When building 3D models from high resolution data acquired by an airborne laser scanner it is de-sirable to separate and classify the data to be able to process it further. For example, to build a polygon model of a building the samples belonging to the building must be found.
In this thesis we have developed, implemented (in IDL and ENVI), and evaluated algorithms for classification of buildings, vegetation, power lines, posts, and roads. The data is gridded and interpolated and a ground surface is estimated before the classification. For the building classification an object based approach was used unlike most classification algorithms which are pixel based. The building classifica-tion has been tested and compared with two existing classification algorithms.
The developed algorithm classified 99.6 % of the building pixels correctly, while the two other algorithms classified 92.2 % respective 80.5 % of the pixels correctly. The algorithms developed for the other classes were tested with thefollowing result (correctly classified pixels): vegetation, 98.8 %; power lines, 98.2 %; posts, 42.3 %; roads, 96.2 %.
Zhao, Lei. "Learning from noisy data: Robust data classification". Thesis, 2012. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/65174.
Pełny tekst źródłaDoctor of Philosophy
Yu, Hsin-Min, i 余欣珉. "Applying Support Vector Data Description For Data Classification". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/61401033111710951818.
Pełny tekst źródła朝陽科技大學
工業工程與管理系碩士班
101
Support Vector Data Description (SVDD) was developed by Tax and Duin in 1999. The objective of SVDD is to obtain a shaped decision boundary with minimum volume around a dataset. SVDD was firstly developed to detecting outliers. In this study, the SVDD will be adopted as a classification tool. The SVDD is unlimited to the data assumption. Moreover, the decision boundary is formed by Support Vectors (SVs) which are obtained from solving convex quadratic programming problem. This study aims at evaluating the impacts of preprocessing methods on the SVDD classification efficiency. The evaluated preprocessing methods are the widely used dimension reduction techniques, including Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three real cases will be implemented. Among which, both causes of gender prediction and mobile phone process are the continuous typed datasets. The other case related to nosocomial infection detection, that is the case from Taichung General Veteran hospital and it is a discrete typed dataset. From Kappa analysis, results demonstrated that SVDD without using preprocessing methods can pose higher classification consistence and lower misclassification rates.
HO, MING-HSUAN, i 何明璇. "Classification of microarray data using fuzzy classification association rules". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/30548430326192789242.
Pełny tekst źródła國立臺灣科技大學
資訊管理系
98
With the advent of microarray technology, people can now measure thousands of gene’s expressions simultaneously in one experiment. The powerful microarray technology helps lay the foundation for bioinformatics and is widely used in disease diagnosis. In this thesis, we use fuzzy classification association rules to study the relationship between gene expressions and diseases in microarray data. In the proposed method, we first divide the universe of discourse of each gene expression in microarray data into several intervals, and define a membership function for each interval. Then, we fuzzify the original microarray data against the gene intervals. Finally, we use the Apriori algorithm to derive a set of classification association rules for each class of the microarray data. When classifying a test sample, we calculate the membership degree of the sample against all the derived rules. The sample belongs to the class against which it has the largest membership degree. Compared with the existing classification methods for microarray data which attain high prediction accuracy with little interpretability, the proposed method attains comparable prediction accuracy with significant improvement on interpretability. Therefore, it can help the study of cancers and improve the efficiency of disease diagnosis. In this research, we use three well-known microarray data sets to compare the performance of the proposed method with the decision tree induction method. The experimental results show that the proposed method significantly outperforms the decision tree induction method in prediction accuracy.
"Data Compression by Unsupervised Classification". Department of Statistics and Mathematics, 1997. http://epub.wu-wien.ac.at/dyn/dl/wp/epub-wu-01_a2f.
Pełny tekst źródłaZhang, Xin. "Classification in the missing data". Master's thesis, 2010. http://hdl.handle.net/10048/1290.
Pełny tekst źródłaStatistics
Yi, Jiang Jhih, i 姜芝怡. "An Incremental Data Classification Technique". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/05970856233052098455.
Pełny tekst źródła國立清華大學
資訊系統與應用研究所
92
In this high competition age, a company has to continuously keep an eye on the latest information in order to hold the upper hand of the industry. The company may have to find the information on the mass media or on the market. They can even find useful information in their own database. The task of mining unseen information and then transforming it into the competitive strategy is essential in the data mining area. Customer relationship management system is one of the most popular data mining applications. In this study, we analyze a subsystem of a 3C retailer’s CRM System ---an eCard recommendation system. At the same time, we propose an architecture for incremental data classification. We then apply this technique to the eCard recommendation system to see whether it would perform better than the existing ones. Experimental results show that the classifier built according to the proposed method has acceptable error rate compared with the existing classifiers. Moreover, it can generate a set of rules which provide some high level semantic description about the data.