Gotowa bibliografia na temat „Data Classification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Data Classification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Data Classification"
Geethika, Paruchuri, i Voleti Prasanthi. "Booster in High Dimensional Data Classification". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1186–90. http://dx.doi.org/10.31142/ijtsrd11368.
Pełny tekst źródłaAlhaisoni, Majed Mohaia, Rabie A. Ramadan i Ahmed Y. Khedr. "SCF: Smart Big Data Classification Framework". Indian Journal of Science and Technology 12, nr 37 (10.10.2019): 1–8. http://dx.doi.org/10.17485/ijst/2019/v12i37/148647.
Pełny tekst źródłaS, Gowtham, i Karuppusamy S. "Review of Data Mining Classification Techniques". Bonfring International Journal of Software Engineering and Soft Computing 9, nr 2 (30.04.2019): 8–11. http://dx.doi.org/10.9756/bijsesc.9013.
Pełny tekst źródłaUprichard, Emma. "Dirty Data: Longitudinal Classification Systems". Sociological Review 59, nr 2_suppl (grudzień 2011): 93–112. http://dx.doi.org/10.1111/j.1467-954x.2012.02058.x.
Pełny tekst źródłaAnam, Mamoona, Dr Kantilal P. Rane, Ali Alenezi, Ruby Mishra, Dr Swaminathan Ramamurthy i Ferdin Joe John Joseph. "Content Classification Tasks with Data Preprocessing Manifestations". Webology 19, nr 1 (20.01.2022): 1413–30. http://dx.doi.org/10.14704/web/v19i1/web19094.
Pełny tekst źródłaRani, A. Nithya, i Dr Antony Selvdoss Davamani. "Classification on Missing Data for Multiple Imputations". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 745–49. http://dx.doi.org/10.31142/ijtsrd9566.
Pełny tekst źródłaN.J., Anjala. "Algorithmic Assessment of Text based Data Classification in Big Data Sets". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31.03.2020): 1231–34. http://dx.doi.org/10.5373/jardcs/v12sp4/20201598.
Pełny tekst źródłaBian, Jiang, Dayong Tian, Yuanyan Tang i Dacheng Tao. "Trajectory Data Classification". ACM Transactions on Intelligent Systems and Technology 10, nr 4 (29.08.2019): 1–34. http://dx.doi.org/10.1145/3330138.
Pełny tekst źródłaSuthaharan, Shan. "Big data classification". ACM SIGMETRICS Performance Evaluation Review 41, nr 4 (17.04.2014): 70–73. http://dx.doi.org/10.1145/2627534.2627557.
Pełny tekst źródłaAnonymous. "Sonar data classification". Eos, Transactions American Geophysical Union 69, nr 38 (1988): 868. http://dx.doi.org/10.1029/88eo01128.
Pełny tekst źródłaRozprawy doktorskie na temat "Data Classification"
Morshedzadeh, Iman. "Data Classification in Product Data Management". Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14651.
Pełny tekst źródłaCurrie, Sheila. "Data classification for choropleth mapping". Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/5725.
Pełny tekst źródłaGómez, Juan Martínez. "Automatic classification of neural data". Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9696.
Pełny tekst źródłaPötzelberger, Klaus, i Helmut Strasser. "Data Compression by Unsupervised Classification". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1997. http://epub.wu.ac.at/974/1/document.pdf.
Pełny tekst źródłaSeries: Forschungsberichte / Institut für Statistik
Soukhoroukova, Nadejda. "Data classification through nonsmooth optimization". Thesis, University of Ballarat [Mt. Helen, Vic.] :, 2003. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/42220.
Pełny tekst źródłaKröger, Viktor. "Classification in Functional Data Analysis : Applications on Motion Data". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184963.
Pełny tekst źródłaFrämre korsbandsskador är vanliga och välkända skador, speciellt bland idrottsutövare. Skadornakräver ofta operationer och långa rehabiliteringsprogram, och kan leda till funktionell nedsättningoch återskador (Marshall et al., 1977). Målet med det här arbetet är att utforska möjligheten attklassificera knän utifrån funktionalitet, där utfallet är känt. Detta genom att använda olika typerav modeller, och genom att testa olika indelningar av grupper. Datat som används är insamlatunder ett prestandatest, där personer hoppat på ett ben med rörelsesensorer på kroppen. Deninsamlade datan representerar position över tid, och betraktas som funktionell data.Med funktionell dataanalys (FDA) kan en process analyseras som en kontinuerlig funktion av tid,istället för att reduceras till ett ändligt antal datapunkter. FDA innehåller många användbaraverktyg, men även utmaningar. En funktionell observation kan till exempel deriveras, ett händigtverktyg som inte återfinns i den multivariata verktygslådan. Hastigheten och accelerationen kandå beräknas utifrån den insamlade datan. Hur "likhet" är definierat, å andra sidan, är inte likauppenbart som med punkt-data. I det här arbetet används FDA för att klassificera knärörelsedatafrån en långtidsuppföljningsstudie av främre korsbandsskador.I detta arbete studeras både funktionella kärnklassificerare och k-närmsta grannar-metoder, och ut-för signifikanstest av modellträffsäkerheten genom omprovtagning. Vidare kan modellerna urskiljaolika egenskaper i datat, beroende på hur närhet definieras. Ensemblemetoder används i ett försökatt nyttja mer av informationen, men lyckas inte överträffa någon av de enskilda modellerna somutgör ensemblen. Vidare så visas också att klassificering på optimerade deldefinitionsmängder kange en högre förklaringskraft än klassificerare som använder hela definitionsmängden.
Lan, Liang. "Data Mining Algorithms for Classification of Complex Biomedical Data". Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/214773.
Pełny tekst źródłaPh.D.
In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray classification, samples belong to several predefined categories (e.g., cancer vs. control tissues) and the goal is to build a predictor that classifies a new tissue sample based on its microarray measurements. When faced with the small-sample high-dimensional microarray data, most machine learning algorithm would produce an overly complicated model that performs well on training data but poorly on new data. To reduce the risk of over-fitting, feature selection becomes an essential technique in microarray classification. However, standard feature selection algorithms are bound to underperform when the size of the microarray data is particularly small. The best remedy is to borrow strength from external microarray datasets. In this dissertation, I will present two new multi-task feature filter methods which can improve the classification performance by utilizing the external microarray data. The first method is to aggregate the feature selection results from multiple microarray classification tasks. The resulting multi-task feature selection can be shown to improve quality of the selected features and lead to higher classification accuracy. The second method jointly selects a small gene set with maximal discriminative power and minimal redundancy across multiple classification tasks by solving an objective function with integer constraints. In protein function prediction problem, gene functions are predicted from a predefined set of possible functions (e.g., the functions defined in the Gene Ontology). Gene function prediction is a complex classification problem characterized by the following aspects: (1) a single gene may have multiple functions; (2) the functions are organized in hierarchy; (3) unbalanced training data for each function (much less positive than negative examples); (4) missing class labels; (5) availability of multiple biological data sources, such as microarray data, genome sequence and protein-protein interactions. As participants in the 2011 Critical Assessment of Function Annotation (CAFA) challenge, our team achieved the highest AUC accuracy among 45 groups. In the competition, we gained by focusing on the 5-th aspect of the problem. Thus, in this dissertation, I will discuss several schemes to integrate the prediction scores from multiple data sources and show their results. Interestingly, the experimental results show that a simple averaging integration method is competitive with other state-of-the-art data integration methods. Original spatial scan algorithm is used for detection of spatial overdensities: discovery of spatial subregions with significantly higher scores according to some density measure. This algorithm is widely used in identifying cluster of disease cases (e.g., identifying environmental risk factors for child leukemia). However, the original spatial scan algorithm only works on static spatial data. In this dissertation, I will propose one possible solution for spatial scan on movement data.
Temple University--Theses
Lozano, Albalate Maria Teresa. "Data Reduction Techniques in Classification Processes". Doctoral thesis, Universitat Jaume I, 2007. http://hdl.handle.net/10803/10479.
Pełny tekst źródłaThe aim of any condensing technique is to obtain a reduced training set in order to spend as few time as possible in classification. All that without a significant loss in classification accuracy. Some
new approaches to training set size reduction based on prototypes are presented. These schemes basically consist of defining a small number of prototypes that represent all the original instances. That includes those approaches that select among the already existing examples (selective condensing algorithms), and those which generate new representatives (adaptive condensing algorithms).
Those new reduction techniques are experimentally compared to some traditional ones, for data represented in feature spaces. In order to test them, the classical 1-NN rule is here applied. However, other classifiers (fast classifiers) have been considered here, as linear and quadratic ones constructed in dissimilarity spaces based on prototypes, in order to realize how editing and condensing concepts work for this different family of classifiers.
Although the goal of the algorithms proposed in this thesis is to obtain a strongly reduced set of representatives, the performance is empirically evaluated over eleven real data sets by comparing not only the reduction rate but also the classification accuracy with those of other condensing techniques. Therefore, the ultimate aim is not only to find a strongly reduced set, but also a balanced one.
Several ways to solve the same problem could be found. So, in the case of using a rule based on distance as a classifier, not only the option of reducing the training set can be afford. A different family of approaches consists of applying several searching methods. Therefore, results obtained by the use of the algorithms here presented are compared in terms of classification accuracy and time, to several efficient search techniques.
Finally, the main contributions of this PhD report could be briefly summarised in four principal points. Firstly, two selective algorithms based on the idea of surrounding neighbourhood. They obtain better results than other algorithms presented here, as well as better than other traditional schemes. Secondly, a generative approach based on mixtures of Gaussians. It presents better results in classification accuracy and size reduction than traditional adaptive algorithms, and similar to those of the LVQ. Thirdly, it is shown that classification rules other than the 1-NN can be used, even leading to better results. And finally, it is deduced from the experiments carried on, that with some databases (as the ones used here) the approaches here presented execute the classification processes in less time that the efficient search techniques.
Aygar, Alper. "Doppler Radar Data Processing And Classification". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609890/index.pdf.
Pełny tekst źródłaLee, Ho-Jin. "Functional data analysis: classification and regression". Texas A&M University, 2004. http://hdl.handle.net/1969.1/2805.
Pełny tekst źródłaKsiążki na temat "Data Classification"
Balderjahn, Ingo, Rudolf Mathar i Martin Schader, red. Classification, Data Analysis, and Data Highways. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72087-1.
Pełny tekst źródłaData analysis, data modeling, and classification. New York: McGraw-Hill, 1992.
Znajdź pełny tekst źródłaJajuga, Krzysztof, Krzysztof Najman i Marek Walesiak, red. Data Analysis and Classification. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75190-6.
Pełny tekst źródłaBatagelj, Vladimir, Hans-Hermann Bock, Anuška Ferligoj i Aleš Žiberna, red. Data Science and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34416-0.
Pełny tekst źródłaJajuga, Krzysztof, Jacek Batóg i Marek Walesiak, red. Classification and Data Analysis. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52348-0.
Pełny tekst źródłaPalumbo, Francesco, Carlo Natale Lauro i Michael J. Greenacre, red. Data Analysis and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03739-9.
Pełny tekst źródłaVichi, Maurizio, i Otto Opitz, red. Classification and Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60126-2.
Pełny tekst źródłaGiusti, Antonio, Gunter Ritter i Maurizio Vichi, red. Classification and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28894-4.
Pełny tekst źródłaGiusti, Antonio. Classification and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaJajuga, Krzysztof, Grażyna Dehnel i Marek Walesiak, red. Modern Classification and Data Analysis. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10190-8.
Pełny tekst źródłaCzęści książek na temat "Data Classification"
Runkler, Thomas A. "Classification". W Data Analytics, 85–101. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-2589-6_8.
Pełny tekst źródłaRunkler, Thomas A. "Classification". W Data Analytics, 91–109. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14075-5_8.
Pełny tekst źródłaRunkler, Thomas A. "Classification". W Data Analytics, 95–115. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29779-4_8.
Pełny tekst źródłaChristen, Peter. "Classification". W Data Matching, 129–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31164-2_6.
Pełny tekst źródłaAggarwal, Charu C. "Data Classification". W Data Mining, 285–344. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14142-8_10.
Pełny tekst źródłaBergel, Alexandre. "Data Classification". W Agile Artificial Intelligence in Pharo, 89–116. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5384-7_5.
Pełny tekst źródłaPaluszek, Michael, i Stephanie Thomas. "Data Classification". W MATLAB Machine Learning, 113–41. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2250-8_8.
Pełny tekst źródłaSlocum, Terry A., Robert B. McMaster, Fritz C. Kessler i Hugh H. Howard. "Data Classification". W Thematic Cartography and Geovisualization, 83–98. Wyd. 4. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003150527-6.
Pełny tekst źródłaToelle, Erica. "Data Classification". W Microsoft 365 Compliance, 61–99. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-5778-4_3.
Pełny tekst źródłaRutkowski, Leszek, Maciej Jaworski i Piotr Duda. "Classification". W Studies in Big Data, 287–308. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13962-9_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Data Classification"
"Content-Adaptive Data Fusion". W The Second International Workshop on Biosignal Processing and Classification. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001222100230032.
Pełny tekst źródłaSimas, Tiago, Gabriel Silva, Bruno Miranda, Andre Moitinho, Rita Ribeiro i Coryn A. L. Bailer-Jones. "Knowledge Discovery in Large Data Sets". W CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059044.
Pełny tekst źródłaBorne, K., J. Becla, I. Davidson, A. Szalay, J. A. Tyson i Coryn A. L. Bailer-Jones. "The LSST Data Mining Research Agenda". W CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059074.
Pełny tekst źródłaBonner, Stephen, John Brennan, Georgios Theodoropoulos, Ibad Kureshi i Andrew Stephen McGough. "Deep topology classification: A new approach for massive graph classification". W 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840988.
Pełny tekst źródłaFerrara, Alfio, Lorenzo Genta i Stefano Montanelli. "Linked data classification". W the Joint EDBT/ICDT 2013 Workshops. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2457317.2457330.
Pełny tekst źródłaAnnapoorna, P. V. Srilakshmi, i T. T. Mirnalinee. "Streaming data classification". W 2016 Fifth International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2016. http://dx.doi.org/10.1109/icrtit.2016.7569525.
Pełny tekst źródłaHeasley, J. N., i Coryn A. L. Bailer-Jones. "The Pan-STARRS Data Processing and Science Analysis Software Systems". W CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059075.
Pełny tekst źródłaHe, Jing Selena, Meng Han, Lei Yu i Chao Mei. "Lung Pattern Classification Via DCNN". W 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378090.
Pełny tekst źródłaZhang, Jason, Krerkkiat Chusap, Wei Zhang i Chang Liu. "Improving Paper Classification Using Forecasting". W 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020764.
Pełny tekst źródłaShinde, Neeta, Chandana S, Shashank Anand Patil, K. Siri Chandana, Neha Tarannum Pendari, P. G. Sunitha Hiremath i Shankar Gangisetty. "Stacked LSTM Based Wafer Classification". W 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671835.
Pełny tekst źródłaRaporty organizacyjne na temat "Data Classification"
Newhouse, Bill. Implementing Data Classification Practices. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.sp.1800-39.ipd.
Pełny tekst źródłaFiebiger, Frank. Map Classification In Image Data. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2015. http://dx.doi.org/10.21236/ad1008925.
Pełny tekst źródłaGorsich, David J., Robert E. Karlsen i Grant R. Gerhart. Classification Consequences of Preprocessing Radar Data. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2000. http://dx.doi.org/10.21236/ada457937.
Pełny tekst źródłaJimenez, Luis O., Miguel Velez i Shawn Hunt. Unsupervised Classification System for Hyperspectral Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, maj 2001. http://dx.doi.org/10.21236/ada398803.
Pełny tekst źródłaLades, M. Motion description for data compression and classification. Office of Scientific and Technical Information (OSTI), luty 1998. http://dx.doi.org/10.2172/8300.
Pełny tekst źródłaKirby, Michael, i Chris Peterson. Classification of Data Bundles via Parameter Spaces. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2011. http://dx.doi.org/10.21236/ada563706.
Pełny tekst źródłaVilim, R. B., E. E. Feldman, W. D. Pointer i T. Y. C. Wei. Initial VHTR accident scenario classification: models and data. Office of Scientific and Technical Information (OSTI), wrzesień 2005. http://dx.doi.org/10.2172/925358.
Pełny tekst źródłaHawkins, Rupert S., K. F. Heideman i Ira G. Smotroff. Cloud Data Set for Neural Network Classification Studies. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1992. http://dx.doi.org/10.21236/ada256181.
Pełny tekst źródłaMaule, R. W., Gordon Schacher, Shelley Gallup, Charles Marashian i Bryan McClain. Ethnographic Qualitative Knowledge Management System Data Classification Schema. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2000. http://dx.doi.org/10.21236/ada384029.
Pełny tekst źródłaStaenz, K., J. W. Schwarz, L. Vernaccini, F. Vachon i C. Nadeau. Classification of Hyperspectral Agricultural Data with Spectral Matching Techniques. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/219608.
Pełny tekst źródła