Rozprawy doktorskie na temat „Data and human knowledge learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Data and human knowledge learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
McKay, Elspeth, i elspeth@rmit edu au. "Instructional strategies integrating cognitive style construct: A meta-knowledge processing model". Deakin University. School of Computing and Mathematics, 2000. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20061011.122556.
Pełny tekst źródłaPomponio, Laura. "Definition of a human-machine learning process from timed observations : application to the modelling of human behaviourfor the detection of abnormal behaviour of old people at home". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4358.
Pełny tekst źródłaKnowledge acquisition has been traditionally approached from a primarily people-driven perspective, through Knowledge Engineering and Management, or from a primarily data-driven approach, through Knowledge Discovery in Databases, rather than from an integral standpoint. This thesis proposes then a human-machine learning approach that combines a Knowledge Engineering modelling approach called TOM4D (Timed Observation Modelling For Diagnosis) with a process of Knowledge Discovery in Databases based on an automatic data mining technique called TOM4L (Timed Observation Mining For Learning). The combination and comparison between models obtained through TOM4D and those ones obtained through TOM4L is possible, owing to that TOM4D and TOM4L are based on the Theory of Timed Observations and share the same representation formalism. Consequently, a learning process nourished with experts' knowledge and knowledge discovered in data is defined in the present work. In addition, this dissertation puts forward a theoretical framework of abstraction levels, in line with the mentioned theory and inspired by the Newell's Knowledge Level work, in order to reduce the broad gap of semantic content that exists between data, relative to an observed process, in a database and what can be inferred in a higher level; that is, in the experts' discursive level. Thus, the human-machine learning approach along with the notion of abstraction levels are then applied to the modelling of human behaviour in smart environments. In particular, the modelling of elderly people's behaviour at home in the GerHome Project of the CSTB (Centre Scientifique et Technique du Bâtiment) of Sophia Antipolis, France
Gaspar, Paulo Miguel da Silva. "Computational methods for gene characterization and genomic knowledge extraction". Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13949.
Pełny tekst źródłaMotivation: Medicine and health sciences are changing from the classical symptom-based to a more personalized and genetics-based paradigm, with an invaluable impact in health-care. While advancements in genetics were already contributing significantly to the knowledge of the human organism, the breakthrough achieved by several recent initiatives provided a comprehensive characterization of the human genetic differences, paving the way for a new era of medical diagnosis and personalized medicine. Data generated from these and posterior experiments are now becoming available, but its volume is now well over the humanly feasible to explore. It is then the responsibility of computer scientists to create the means for extracting the information and knowledge contained in that data. Within the available data, genetic structures contain significant amounts of encoded information that has been uncovered in the past decades. Finding, reading and interpreting that information are necessary steps for building computational models of genetic entities, organisms and diseases; a goal that in due course leads to human benefits. Aims: Numerous patterns can be found within the human variome and exome. Exploring these patterns enables the computational analysis and manipulation of digital genomic data, but requires specialized algorithmic approaches. In this work we sought to create and explore efficient methodologies to computationally calculate and combine known biological patterns for various purposes, such as the in silico optimization of genetic structures, analysis of human genes, and prediction of pathogenicity from human genetic variants. Results: We devised several computational strategies to evaluate genes, explore genomes, manipulate sequences, and analyze patients’ variomes. By resorting to combinatorial and optimization techniques we were able to create and combine sequence redesign algorithms to control genetic structures; by combining the access to several web-services and external resources we created tools to explore and analyze available genetic data and patient data; and by using machine learning we developed a workflow for analyzing human mutations and predicting their pathogenicity.
Motivação: A medicina e as ciências da saúde estão atualmente num processo de alteração que muda o paradigma clássico baseado em sintomas para um personalizado e baseado na genética. O valor do impacto desta mudança nos cuidados da saúde é inestimável. Não obstante as contribuições dos avanços na genética para o conhecimento do organismo humano até agora, as descobertas realizadas recentemente por algumas iniciativas forneceram uma caracterização detalhada das diferenças genéticas humanas, abrindo o caminho a uma nova era de diagnóstico médico e medicina personalizada. Os dados gerados por estas e outras iniciativas estão disponíveis mas o seu volume está muito para lá do humanamente explorável, e é portanto da responsabilidade dos cientistas informáticos criar os meios para extrair a informação e conhecimento contidos nesses dados. Dentro dos dados disponíveis estão estruturas genéticas que contêm uma quantidade significativa de informação codificada que tem vindo a ser descoberta nas últimas décadas. Encontrar, ler e interpretar essa informação são passos necessários para construir modelos computacionais de entidades genéticas, organismos e doenças; uma meta que, em devido tempo, leva a benefícios humanos. Objetivos: É possível encontrar vários padrões no varioma e exoma humano. Explorar estes padrões permite a análise e manipulação computacional de dados genéticos digitais, mas requer algoritmos especializados. Neste trabalho procurámos criar e explorar metodologias eficientes para o cálculo e combinação de padrões biológicos conhecidos, com a intenção de realizar otimizações in silico de estruturas genéticas, análises de genes humanos, e previsão da patogenicidade a partir de diferenças genéticas humanas. Resultados: Concebemos várias estratégias computacionais para avaliar genes, explorar genomas, manipular sequências, e analisar o varioma de pacientes. Recorrendo a técnicas combinatórias e de otimização criámos e conjugámos algoritmos de redesenho de sequências para controlar estruturas genéticas; através da combinação do acesso a vários web-services e recursos externos criámos ferramentas para explorar e analisar dados genéticos, incluindo dados de pacientes; e através da aprendizagem automática desenvolvemos um procedimento para analisar mutações humanas e prever a sua patogenicidade.
Zeni, Mattia. "Bridging Sensor Data Streams and Human Knowledge". Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2724/1/Thesis.pdf.
Pełny tekst źródłaZhang, Ping. "Learning from Multiple Knowledge Sources". Diss., Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/214795.
Pełny tekst źródłaPh.D.
In supervised learning, it is usually assumed that true labels are readily available from a single annotator or source. However, recent advances in corroborative technology have given rise to situations where the true label of the target is unknown. In such problems, multiple sources or annotators are often available that provide noisy labels of the targets. In these multi-annotator problems, building a classifier in the traditional single-annotator manner, without regard for the annotator properties may not be effective in general. In recent years, how to make the best use of the labeling information provided by multiple annotators to approximate the hidden true concept has drawn the attention of researchers in machine learning and data mining. In our previous work, a probabilistic method (i.e., MAP-ML algorithm) of iteratively evaluating the different annotators and giving an estimate of the hidden true labels is developed. However, the method assumes the error rate of each annotator is consistent across all the input data. This is an impractical assumption in many cases since annotator knowledge can fluctuate considerably depending on the groups of input instances. In this dissertation, one of our proposed methods, GMM-MAPML algorithm, follows MAP-ML but relaxes the data-independent assumption, i.e., we assume an annotator may not be consistently accurate across the entire feature space. GMM-MAPML uses a Gaussian mixture model (GMM) and Bayesian information criterion (BIC) to find the fittest model to approximate the distribution of the instances. Then the maximum a posterior (MAP) estimation of the hidden true labels and the maximum-likelihood (ML) estimation of quality of multiple annotators at each Gaussian component are provided alternately. Recent studies show that it is not the case that employing more annotators regardless of their expertise will result in improved highest aggregating performance. In this dissertation, we also propose a novel algorithm to integrate multiple annotators by Aggregating Experts and Filtering Novices, which we call AEFN. AEFN iteratively evaluates annotators, filters the low-quality annotators, and re-estimates the labels based only on information obtained from the good annotators. The noisy annotations we integrate are from any combination of human and previously existing machine-based classifiers, and thus AEFN can be applied to many real-world problems. Emotional speech classification, CASP9 protein disorder prediction, and biomedical text annotation experiments show a significant performance improvement of the proposed methods (i.e., GMM-MAPML and AEFN) as compared to the majority voting baseline and the previous data-independent MAP-ML method. Recent experiments include predicting novel drug indications (i.e., drug repositioning) for both approved drugs and new molecules by integrating multiple chemical, biological or phenotypic data sources.
Temple University--Theses
Lazzarini, Nicola. "Knowledge extraction from biomedical data using machine learning". Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3839.
Pełny tekst źródłaLipton, Zachary C. "Learning from Temporally-Structured Human Activities Data". Thesis, University of California, San Diego, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10683703.
Pełny tekst źródłaDespite the extraordinary success of deep learning on diverse problems, these triumphs are too often confined to large, clean datasets and well-defined objectives. Face recognition systems train on millions of perfectly annotated images. Commercial speech recognition systems train on thousands of hours of painstakingly-annotated data. But for applications addressing human activity, data can be noisy, expensive to collect, and plagued by missing values. In electronic health records, for example, each attribute might be observed on a different time scale. Complicating matters further, deciding precisely what objective warrants optimization requires critical consideration of both algorithms and the application domain. Moreover, deploying human-interacting systems requires careful consideration of societal demands such as safety, interpretability, and fairness.
The aim of this thesis is to address the obstacles to mining temporal patterns in human activity data. The primary contributions are: (1) the first application of RNNs to multivariate clinical time series data, with several techniques for bridging long-term dependencies and modeling missing data; (2) a neural network algorithm for forecasting surgery duration while simultaneously modeling heteroscedasticity; (3) an approach to quantitative investing that uses RNNs to forecast company fundamentals; (4) an exploration strategy for deep reinforcement learners that significantly speeds up dialogue policy learning; (5) an algorithm to minimize the number of catastrophic mistakes made by a reinforcement learner; (6) critical works addressing model interpretability and fairness in algorithmic decision-making.
Varol, Gül. "Learning human body and human action representations from visual data". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE029.
Pełny tekst źródłaThe focus of visual content is often people. Automatic analysis of people from visual data is therefore of great importance for numerous applications in content search, autonomous driving, surveillance, health care, and entertainment. The goal of this thesis is to learn visual representations for human understanding. Particular emphasis is given to two closely related areas of computer vision: human body analysis and human action recognition. In summary, our contributions are the following: (i) we generate photo-realistic synthetic data for people that allows training CNNs for human body analysis, (ii) we propose a multi-task architecture to recover a volumetric body shape from a single image, (iii) we study the benefits of long-term temporal convolutions for human action recognition using 3D CNNs, (iv) we incorporate similarity training in multi-view videos to design view-independent representations for action recognition
Kaithi, Bhargavacharan Reddy. "Knowledge Graph Reasoning over Unseen RDF Data". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1571955816559707.
Pełny tekst źródłaToussaint, Ben-Manson. "Apprentissage automatique à partir de traces multi-sources hétérogènes pour la modélisation de connaissances perceptivo-gestuelles". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM063/document.
Pełny tekst źródłaPerceptual-gestural knowledge is multimodal : they combine theoretical and perceptual and gestural knowledge. It is difficult to capture in Intelligent Tutoring Systems. In fact, its capture in such systems involves the use of multiple devices or sensors covering all the modalities of underlying interactions. The "traces" of these interactions -also referred to as "activity traces"- are the raw material for the production of key tutoring services that consider their multimodal nature. Methods for "learning analytics" and production of "tutoring services" that favor one or another facet over others, are incomplete. However, the use of diverse devices generates heterogeneous activity traces. Those latter are hard to model and treat.My doctoral project addresses the challenge related to the production of tutoring services that are congruent to this type of knowledge. I am specifically interested to this type of knowledge in the context of "ill-defined domains". My research case study is the Intelligent Tutoring System TELEOS, a simulation platform dedicated to percutaneous orthopedic surgery.The contributions of this thesis are threefold : (1) the formalization of perceptual-gestural interactions sequences; (2) the implementation of tools capable of reifying the proposed conceptual model; (3) the conception and implementation of algorithmic tools fostering the analysis of these sequences from a didactic point of view
Buehner, Marc. "Delay and knowledge mediation in human causal reasoning". Thesis, University of Sheffield, 2002. http://etheses.whiterose.ac.uk/3418/.
Pełny tekst źródłaBorchmann, Daniel. "Learning Terminological Knowledge with High Confidence from Erroneous Data". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-152028.
Pełny tekst źródłaZhang, Shanshan. "Deep Learning for Unstructured Data by Leveraging Domain Knowledge". Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/580099.
Pełny tekst źródłaPh.D.
Unstructured data such as texts, strings, images, audios, videos are everywhere due to the social interaction on the Internet and the high-throughput technology in sciences, e.g., chemistry and biology. However, for traditional machine learning algorithms, classifying a text document is far more difficult than classifying a data entry in a spreadsheet. We have to convert the unstructured data into some numeric vectors which can then be understood by machine learning algorithms. For example, a sentence is first converted to a vector of word counts, and then fed into a classification algorithm such as logistic regression and support vector machine. The creation of such numerical vectors is very challenging and difficult. Recent progress in deep learning provides us a new way to jointly learn features and train classifiers for unstructured data. For example, recurrent neural networks proved successful at learning from a sequence of word indices; convolutional neural networks are effective to learn from videos, which are sequences of pixel matrices. Our research focuses on developing novel deep learning approaches for text and graph data. Breakthroughs using deep learning have been made during the last few years for many core tasks in natural language processing, such as machine translation, POS tagging, named entity recognition, etc. However, when it comes to informal and noisy text data, such as tweets, HTMLs, OCR, there are two major issues with modern deep learning technologies. First, deep learning requires large amount of labeled data to train an effective model; second, neural network architectures that work with natural language are not proper with informal text. In this thesis, we address the two important issues and develop new deep learning approaches in four supervised and unsupervised tasks with noisy text. We first present a deep feature engineering approach for informative tweets discovery during the emerging disasters. We propose to use unlabeled microblogs to cluster words into a limited number of clusters and use the word clusters as features for tweets discovery. Our results indicate that when the number of labeled tweets is 100 or less, the proposed approach is superior to the standard classification based on the bag or words feature representation. We then introduce a human-in-the-loop (HIL) framework for entity identification from noisy web text. Our work explores ways to combine the expressive power of REs, ability of deep learning to learn from large data into a new integrated framework for entity identification from web data. The evaluation on several entity identification problems shows that the proposed framework achieves very high accuracy while requiring only a modest human involvement. We further extend the framework of entity identification to an iterative HIL framework that addresses the entity recognition problem. We particularly investigate how human invest their time when a user is allowed to choose between regex construction and manual labeling. Finally, we address a fundamental problem in the text mining domain, i.e, embedding of rare and out-of-vocabulary (OOV) words, by refining word embedding models and character embedding models in an iterative way. We illustrate the simplicity but effectiveness of our method when applying it to online professional profiles allowing noisy user input. Graph neural networks have been shown great success in the domain of drug design and material sciences, where organic molecules and crystal structures of materials are represented as attributed graphs. A deep learning architecture that is capable of learning from graph nodes and graph edges is crucial for property estimation of molecules. In this dissertation, We propose a simple graph representation for molecules and three neural network architectures that is able to directly learn predictive functions from graphs. We discover that, it is true graph networks are superior than feature-driven algorithms for formation energy prediction. However, the superiority can not be reproduced on band gap prediction. We also discovered that our proposed simple shallow neural networks perform comparably with the state-of-the-art deep neural networks.
Temple University--Theses
Allen, Brett. "Learning body shape models from real-world data /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6969.
Pełny tekst źródłaAli, Syed. "Towards Human-Like Automated Driving| Learning Spacing Profiles from Human Driving Data". Thesis, Wayne State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10637971.
Pełny tekst źródłaFor automated driving vehicles to be accepted by their users and safely integrate with traffic involving human drivers, they need to act and behave like human drivers. This not only involves understanding how the human driver or occupant in the automated vehicle expects their vehicle to operate, but also involves how other road users perceive the automated vehicle’s intentions. This research aimed at learning how drivers space themselves while driving around other vehicles. It is shown that an optimized lane change maneuver does create a solution that is much different than what a human would do. There is a need to learn complex driving preferences from studying human drivers.
This research fills the gap in terms of learning human driving styles by providing an example of learned behavior (vehicle spacing) and the needed framework for encapsulating the learned data. A complete framework from problem formulation to data gathering and learning from human driving data was formulated as part of this research. On-road vehicle data were gathered while a human driver drove a vehicle. The driver was asked to make lane changes for stationary vehicles in his path with various road curvature conditions and speeds. The gathered data, as well as Learning from Demonstration techniques, were used in formulating the spacing profile as a lane change maneuver. A concise feature set from captured data was identified to strongly represent a driver’s spacing profile and a model was developed. The learned model represented the driver’s spacing profile from stationary vehicles within acceptable statistical tolerance. This work provides a methodology for many other scenarios from which human-like driving style and related parameters can be learned and applied to automated vehicles
Kong, Shumin. "Towards Lightweight Neural Networks with Few Data via Knowledge Distillation". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24650.
Pełny tekst źródłaGrubinger, Thomas. "Knowledge Extraction from Logged Truck Data using Unsupervised Learning Methods". Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1147.
Pełny tekst źródłaThe goal was to extract knowledge from data that is logged by the electronic system of
every Volvo truck. This allowed the evaluation of large populations of trucks without requiring additional measuring devices and facilities.
An evaluation cycle, similar to the knowledge discovery from databases model, was
developed and applied to extract knowledge from data. The focus was on extracting
information in the logged data that is related to the class labels of different populations,
but also supported knowledge extraction inherent from the given classes. The methods
used come from the field of unsupervised learning, a sub-field of machine learning and
include the methods self-organizing maps, multi-dimensional scaling and fuzzy c-means
clustering.
The developed evaluation cycle was exemplied by the evaluation of three data-sets.
Two data-sets were arranged from populations of trucks differing by their operating
environment regarding road condition or gross combination weight. The results showed
that there is relevant information in the logged data that describes these differences
in the operating environment. A third data-set consisted of populations with different
engine configurations, causing the two groups of trucks being unequally powerful.
Using the knowledge extracted in this task, engines that were sold in one of the two
configurations and were modified later, could be detected.
Information in the logged data that describes the vehicle's operating environment,
allows to detect trucks that are operated differently of their intended use. Initial experiments
to find such vehicles were conducted and recommendations for an automated
application were given.
Farrash, Majed. "Machine learning ensemble method for discovering knowledge from big data". Thesis, University of East Anglia, 2016. https://ueaeprints.uea.ac.uk/59367/.
Pełny tekst źródłaLi, Xin. "Graph-based learning for information systems". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193827.
Pełny tekst źródłaSimonsson, Simon. "Learning of robot-to-human object handovers". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251505.
Pełny tekst źródłaI detta examensarbete presenteras ett förslag på ett system för robotar att lära sig på ett autonomt semi-supervised vis egenskaper vid överlämning för olika objekt genom att observera människor, som kan senare även användas till nya objekt. Med hjälp av inspelat material på överlämningar, identifierar vi egenskaper som gör det möjligt att klassificera objekten genom unsupervised learning. Resultaten från denna klassificering kombineras med bilder på objekten som används till att träna ett nätverk på ett supervised vis, som lär sig att förutspå korrekt klass för ett objekt via bilddata. Resultaten från detta arbete visar att objekt som överlämnas på liknande vis även har liknande visuella egenskaper, och med en begränsad mängd med data kan vi träna en modell som med hög träffsäkerhet ger oss inställningarna för överlämningen utav ett objekt vare sig det har påträffats tidigare eller inte.
Rosquist, Christine. "Text Classification of Human Resources-related Data with Machine Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302375.
Pełny tekst źródłaTextklassificering har varit en viktig tillämpning och ett viktigt forskningsämne sedan uppkomsten av digitala dokument. Idag, i och med att allt mer data sparas i form av elektroniska dokument, är textklassificeringen ännu mer relevant. Det existerar flera studier som applicerar maskininlärningsmodeller så som Naive Bayes och Convolutional Neural Networks (CNN) på textklassificering och sentimentanalys. Dock ligger inte fokuset i dessa studier på en krossdomän-klassificering, vilket innebär att maskinlärningsmodellerna tränas på ett dataset från en viss kontext och sedan testas på ett dataset från en annan kontext. Detta är användbart när det inte finns tillräckligt med träningsdata från den specifika domänen där textdata ska klassificeras. Den här studien undersöker hur maskininlärningsmodellerna Naive Bayes och CNN presterar när de är tränade i en viss kontext och sedan testade i en annan, något annorlunda, kontext. Studien använder data från recensioner gjorda av anställda för att träna modellerna, som sedan testas på den datan men också på personalavdelningsrelaterad data. Således är syftet med denna studie att bidra med insikt i hur ett system kan utvecklas med kapabilitet att utföra en korrekt krossdomän-klassificering, samt bidra med generell insikt till forskningsämnet textklassificering. En jämförande analys av modellerna Naive Bayes och CNN utfördes, och resultaten visade att modellerna presterar lika när det kom till att klassificera text genom att enbart använda datan med recensioner gjorda av anställda för att träna och testa modellerna. Dock visade det sig att CNN presterade bättre när det kom till multiklass-klassificering av datan med recensioner gjorda av anställda, vilket indikerar att CNN kan vara en bättre modell i den kontexten. Från ett krossdomän-perspektiv visade det sig att Naive Bayes var den bättre modellen, i och med att den modellen presterade bäst i alla mätningar. Båda modellerna kan användas som guidningsverktyg för att klassificera personalavdelningsrelaterad data, trots att Naive Bayes var modellen som presterade bäst i ett krossdomän-perspektiv. Resultatet kan förbättrats en del med mer forskning, och behöver verifieras med mer data. Förslag på hur resultaten kan förbättras är att förbättra hyperparameteroptimeringen, använda en annan metod för att hantera den obalanserade datan samt att justera förbehandlingen av datan. Det är också värt att notera att den statistiska signifikansen inte kunde bekräftas i alla testfall, vilket innebär att inga egentliga slutsatser kan dras, även om det fortfarande bidrar med en indikering om hur bra de olika modellerna presterar i de olika fallen.
Trinh, Viet. "CONTEXTUALIZING OBSERVATIONAL DATA FOR MODELING HUMAN PERFORMANCE". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2747.
Pełny tekst źródłaPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering PhD
Wang, Yuan. "Mastering the Game of Gomoku without Human Knowledge". DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1865.
Pełny tekst źródłaNatvig, Filip. "Knowledge Transfer Applied on an Anomaly Detection Problem Using Financial Data". Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-451884.
Pełny tekst źródłaFredin, Haslum Johan. "Deep Reinforcement Learning for Adaptive Human Robotic Collaboration". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251013.
Pełny tekst źródłaNärvaron av robotar förväntas bli en allt vanligare del av de flesta människors vardagsliv. När antalet robotar ökar, så ökar även antalet människa-robot-interaktioner. För att dessa interaktioner ska vara användbara och intuitiva, kommer nya avancerade robotkontrollstrategier att vara nödvändiga. Nuvarande strategier saknar ofta flexibilitet, är mycket beroende av mänsklig kunskap och är ofta programmerade för mycket specifika användningsfall. Ett lovande alternativ är användningen av Deep Reinforcement Learning, en familj av algoritmer som lär sig genom att testa sig fram, likt en människa. Efter den senaste tidens framgångar inom Reinforcement Learning (RL) vilket applicerats på områden som tidigare ansetts vara för komplexa har RL nu blivit ett möjlig alternativ till mer etablerade metoder för att lära sig kontrollstrategier för robotar. Denna uppsats undersöker möjligheten att använda Deep Reinforcement Learning (DRL) som metod för att lära sig sådana kontrollstrategier för människa-robot-samarbeten. Specifikt kommer den att utvärdera om DRL-algoritmer kan användas för att träna en robot och en människa att tillsammans balansera en boll längs en förutbestämd bana på ett bord. För att utvärdera om det är möjligt utförs flera experiment i en simulator, där två robotar gemensamt balanserar en boll, en simulerar en människa och den andra en robot som kontrolleras med hjälp av DRLalgoritmen. De utförda experimenten tyder på att DRL kan användas för att möjliggöra människa-robot-samarbeten som utförs lika bra eller bättre än en simulerad människa som utför uppgiften ensam. Vidare indikerar experimenten att prestationer med mindre kompetenta mänskliga deltagare kan förbättras genom att samarbeta med en DRLalgoritm-kontrollerad robot.
Gheyas, Iffat A. "Novel computationally intelligent machine learning algorithms for data mining and knowledge discovery". Thesis, University of Stirling, 2009. http://hdl.handle.net/1893/2152.
Pełny tekst źródłaZhao, Zilong. "Extracting knowledge from macroeconomic data, images and unreliable data". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT074.
Pełny tekst źródłaSystem identification and machine learning are two similar concepts independently used in automatic and computer science community. System identification uses statistical methods to build mathematical models of dynamical systems from measured data. Machine learning algorithms build a mathematical model based on sample data, known as "training data" (clean or not), in order to make predictions or decisions without being explicitly programmed to do so. Except prediction accuracy, converging speed and stability are another two key factors to evaluate the training process, especially in the online learning scenario, and these properties have already been well studied in control theory. Therefore, this thesis will implement the interdisciplinary researches for following topic: 1) System identification and optimal control on macroeconomic data: We first modelize the China macroeconomic data on Vector Auto-Regression (VAR) model, then identify the cointegration relation between variables and use Vector Error Correction Model (VECM) to study the short-time fluctuations around the long-term equilibrium, Granger Causality is also studied with VECM. This work reveals the trend of China's economic growth transition: from export-oriented to consumption-oriented; Due to limitation of China economic data, we turn to use France macroeconomic data in the second study. We represent the model in state-space, put the model into a feedback control framework, the controller is designed by Linear-Quadratic Regulator (LQR). The system can apply the control law to bring the system to a desired state. We can also impose perturbations on outputs and constraints on inputs, which emulates the real-world situation of economic crisis. Economists can observe the recovery trajectory of economy, which gives meaningful implications for policy-making. 2) Using control theory to improve the online learning of deep neural network: We propose a performance-based learning rate algorithm: E (Exponential)/PD (Proportional Derivative) feedback control, which consider the Convolutional Neural Network (CNN) as plant, learning rate as control signal and loss value as error signal. Results show that E/PD outperforms the state-of-the-art in final accuracy, final loss and converging speed, and the result are also more stable. However, one observation from E/PD experiments is that learning rate decreases while loss continuously decreases. But loss decreases mean model approaches optimum, we should not decrease the learning rate. To prevent this, we propose an event-based E/PD. Results show that it improves E/PD in final accuracy, final loss and converging speed; Another observation from E/PD experiment is that online learning fixes a constant training epoch for each batch. Since E/PD converges fast, the significant improvement only comes from the beginning epochs. Therefore, we propose another event-based E/PD, which inspects the historical loss, when the progress of training is lower than a certain threshold, we turn to next batch. Results show that it can save up to 67% epochs on CIFAR-10 dataset without degrading much performance. 3) Machine learning out of unreliable data: We propose a generic framework: Robust Anomaly Detector (RAD), The data selection part of RAD is a two-layer framework, where the first layer is used to filter out the suspicious data, and the second layer detects the anomaly patterns from the remaining data. We also derive three variations of RAD namely, voting, active learning and slim, which use additional information, e.g., opinions of conflicting classifiers and queries of oracles. We iteratively update the historical selected data to improve accumulated data quality. Results show that RAD can continuously improve model's performance under the presence of noise on labels. Three variations of RAD show they can all improve the original setting, and the RAD Active Learning performs almost as good as the case where there is no noise on labels
Qian, Weizhu. "Discovering human mobility from mobile data : probabilistic models and learning algorithms". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA025.
Pełny tekst źródłaSmartphone usage data can be used to study human indoor and outdoor mobility. In our work, we investigate both aspects in proposing machine learning-based algorithms adapted to the different information sources that can be collected.In terms of outdoor mobility, we use the collected GPS coordinate data to discover the daily mobility patterns of the users. To this end, we propose an automatic clustering algorithm using the Dirichlet process Gaussian mixture model (DPGMM) so as to cluster the daily GPS trajectories. This clustering method is based on estimating probability densities of the trajectories, which alleviate the problems caused by the data noise.By contrast, we utilize the collected WiFi fingerprint data to study indoor human mobility. In order to predict the indoor user location at the next time points, we devise a hybrid deep learning model, called the convolutional mixture density recurrent neural network (CMDRNN), which combines the advantages of different multiple deep neural networks. Moreover, as for accurate indoor location recognition, we presume that there exists a latent distribution governing the input and output at the same time. Based on this assumption, we develop a variational auto-encoder (VAE)-based semi-supervised learning model. In the unsupervised learning procedure, we employ a VAE model to learn a latent distribution of the input, the WiFi fingerprint data. In the supervised learning procedure, we use a neural network to compute the target, the user coordinates. Furthermore, based on the same assumption used in the VAE-based semi-supervised learning model, we leverage the information bottleneck theory to devise a variational information bottleneck (VIB)-based model. This is an end-to-end deep learning model which is easier to train and has better performance.Finally, we validate thees proposed methods on several public real-world datasets providing thus results that verify the efficiencies of our methods as compared to other existing methods generally used
Tuovinen, L. (Lauri). "From machine learning to learning with machines:remodeling the knowledge discovery process". Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526205243.
Pełny tekst źródłaTiivistelmä Tiedonlouhintateknologialla etsitään automoidusti tietoa suurista määristä digitaalista dataa. Vakiintunut prosessimalli kuvaa tiedonlouhintaprosessia lineaarisesti ja teknologiakeskeisesti sarjana muunnoksia, jotka jalostavat raakadataa yhä abstraktimpiin ja tiivistetympiin esitysmuotoihin. Todellisissa tiedonlouhintaprosesseissa on kuitenkin aina osa-alueita, joita tällainen malli ei kata riittävän hyvin. Erityisesti on huomattava, että eräät prosessin tärkeimmistä toimijoista ovat ihmisiä, eivät teknologiaa, ja että heidän toimintansa prosessissa on luonteeltaan vuorovaikutteista eikä sarjallista. Tässä väitöskirjassa ehdotetaan vakiintuneen mallin täydentämistä siten, että tämä tiedonlouhintaprosessin laiminlyöty ulottuvuus otetaan huomioon. Ehdotettu prosessimalli koostuu kolmesta osamallista, jotka ovat tietomalli, työnkulkumalli ja arkkitehtuurimalli. Kukin osamalli tarkastelee tiedonlouhintaprosessia eri näkökulmasta: tietomallin näkökulma käsittää tiedon eri olomuodot sekä muunnokset olomuotojen välillä, työnkulkumalli kuvaa prosessin toimijat sekä niiden väliset vuorovaikutukset, ja arkkitehtuurimalli ohjaa prosessin suorittamista tukevien ohjelmistojen suunnittelua. Väitöskirjassa määritellään aluksi kullekin osamallille joukko vaatimuksia, minkä jälkeen esitetään vaatimusten täyttämiseksi suunniteltu ratkaisu. Lopuksi palataan tarkastelemaan vaatimuksia ja osoitetaan, kuinka ne on otettu ratkaisussa huomioon. Väitöskirjan pääasiallinen kontribuutio on se, että se avaa tiedonlouhintaprosessiin valtavirran käsityksiä laajemman tarkastelukulman. Väitöskirjan sisältämä täydennetty prosessimalli hyödyntää vakiintunutta mallia, mutta laajentaa sitä kokoamalla tiedonhallinnan ja tietämyksen esittämisen, tiedon louhinnan työnkulun sekä ohjelmistoarkkitehtuurin osatekijöiksi yhdistettyyn malliin. Lisäksi malli kattaa aiheita, joita tavallisesti ei oteta huomioon tai joiden ei katsota kuuluvan osaksi tiedonlouhintaprosessia; tällaisia ovat esimerkiksi tiedon louhintaan liittyvät filosofiset kysymykset. Väitöskirjassa käsitellään myös kahta ohjelmistokehystä ja neljää tapaustutkimuksena esiteltävää sovellusta, jotka edustavat teknisiä ratkaisuja eräisiin yksittäisiin tiedonlouhintaprosessin osaongelmiin. Kehykset ja sovellukset toteuttavat ja havainnollistavat useita ehdotetun prosessimallin merkittävimpiä ominaisuuksia
Sadeghian, Paria. "Human mobility behavior : Transport mode detection by GPS data". Licentiate thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-36346.
Pełny tekst źródłaFERRARI, ANNA. "Personalization of Human Activity Recognition Methods using Inertial Data". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305222.
Pełny tekst źródłaRecognizing human activities and monitoring population behavior are fun- damental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, lifestyle and behavior tracking are some of the main applications which require the recognition of activities. Activity recognition involves many phases, i.e. the collection, the elaboration and the analysis of information about human activities and behavior. These tasks can be fulfilled manually or automatically, even though a human-based recognition system is not long-term sustainable and scalable. Nevertheless, transforming a human-based recognition system to computer- based automatic system is not a simple task because it requires dedicated hardware and a sophisticated engineering computational and statistical techniques for data preprocessing and analysis. Recently, considerable changes in tech- nologies are largely facilitating this transformation. Indeed, new hardwares and softwares have drastically modified the activity recognition systems. For example, Micro-Electro-Mechanical Systems (MEMS) progress has enabled a reduction in the size of the hardware. Consequently, costs have decreased. Size and cost reduction allows to embed sophisticated sensors into simple devices, such as phones, watches, and even into shoes and clothes, also called wearable devices. Furthermore, low costs, lightness, and small size have made wearable devices’ highly pervasive and accelerated their spread among the population. Today, a very small part of the world population doesn’t own a smartphone. According to Digital 2020: Global Digital Overview, more than 5.19 billion people now use mobile phones. Among the western countries, smartphones and smartwatches are gadgets of people everyday life. The pervasiveness is an undoubted advantage in terms of data generation. Huge amount of data, that is big data, are produced every day. Furthermore, wearable devices together with new advanced software technologies enable data to be sent to servers and instantly analyzed by high performing computers. The availability of big data and new technology improvements, permitted Artificial Intelligence models to rise. In particular, machine learning and deep learning algorithms are predominant in activity recognition. Together with technological and algorithm innovations, the Human Ac- tivity recognition (HAR) research field has born. HAR is a field of research which aims at automatically recognizing people’s physical activities. HAR investigates on the selection of the best hardware, e. g. the best devices to be used for a given application, on the choice of the software to be dedicated to a specific task, and on the increasing of the algorithm performances. HAR has been a very active field of research for years and it is still considered one of the most promising research topic for a large spectrum of ap- plications. In particular, it remains a very challenging research field for many reasons. The selection of devices and sensors, the algorithm’s performances, the collection and the preprocessing of the data, all are requiring further investigation to improve the overall activity recognition system performances. In this work, two main aspects have been investigated: • the benefits of personalization on the algorithm performances, when trained on small size datasets: one of the main issue concerning HAR research community is the lack of the availability of public dataset and labelled data. [...] • a comparison of the performances in HAR obtained both from tradi- tional and personalized machine learning and deep learning techniques.[...]
Zhong, Yuqing. "Investigating Human Gut Microbiome in Obesity with Machine Learning Methods". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011875/.
Pełny tekst źródłaSwart, Juani. "Self-awareness and collective tacit knowledge : an exploratory approach". Thesis, University of Bath, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341144.
Pełny tekst źródłaDistel, Felix. "Learning Description Logic Knowledge Bases from Data Using Methods from Formal Concept Analysis". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70199.
Pełny tekst źródłaDam, Hai Huong Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "A scalable evolutionary learning classifier system for knowledge discovery in stream data mining". Awarded by:University of New South Wales - Australian Defence Force Academy, 2008. http://handle.unsw.edu.au/1959.4/38865.
Pełny tekst źródłaFabian, Alain. "Creating an Interactive Learning Environment with Reusable HCI Knowledge". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33339.
Pełny tekst źródłaMaster of Science
Suutala, J. (Jaakko). "Learning discriminative models from structured multi-sensor data for human context recognition". Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789514298493.
Pełny tekst źródłaTiivistelmä Tässä työssä kehitettiin ja sovellettiin tilastollisen koneoppimisen ja hahmontunnistuksen menetelmiä anturipohjaiseen ihmiseen liittyvän tilannetiedon tunnistamiseen. Esitetyt menetelmät kuuluvat erottelevan oppimisen viitekehykseen, jossa ennustemalli sisääntulomuuttujien ja vastemuuttujan välille voidaan oppia suoraan tunnetuilla vastemuuttujilla nimetystä aineistosta. Parametrittomien erottelevien mallien oppimiseen käytettiin ydinmenetelmiä kuten tukivektorikoneita (SVM) ja Gaussin prosesseja (GP), joita voidaan pitää yhtenä modernin tilastollisen koneoppimisen tärkeimmistä menetelmistä. Työssä kehitettiin näihin menetelmiin liittyviä laajennuksia, joiden avulla rakenteellista aineistoa voidaan mallittaa paremmin reaalimaailman sovelluksissa, esimerkiksi tilannetietoisen laskennan sovellusalueella. Tutkimuksessa sovellettiin SVM- ja GP-menetelmiä moniluokkaisiin luokitteluongelmiin rakenteellisen monianturitiedon mallituksessa. Useiden tietolähteiden käsittelyyn esitetään menettely, joka yhdistää useat opetetut luokittelijat päätöstason säännöillä lopulliseksi malliksi. Tämän lisäksi aikasarjatiedon käsittelyyn kehitettiin uusi graafiesitykseen perustuva ydinfunktio sekä menettely sekventiaalisten luokkavastemuuttujien käsittelyyn. Nämä voidaan liittää modulaarisesti ydinmenetelmiin perustuviin erotteleviin luokittelijoihin. Lopuksi esitetään tekniikoita usean liikkuvan kohteen seuraamiseen. Menetelmät perustuvat anturitiedosta oppivaan GP-regressiomalliin ja partikkelisuodattimeen. Työssä esitettyjä menetelmiä sovellettiin kolmessa ihmisen liikkeisiin liittyvässä tilannetiedon tunnistussovelluksessa: henkilön biometrinen tunnistaminen, henkilöiden seuraaminen sekä aktiviteettien tunnistaminen. Näissä sovelluksissa henkilön asentoa, liikkeitä ja astuntaa kävelyn ja muiden aktiviteettien aikana mitattiin kahdella erilaisella paineherkällä lattia-anturilla sekä puettavilla kiihtyvyysantureilla. Tunnistusmenetelmien laajennuksien lisäksi jokaisessa sovelluksessa kehitettiin menetelmiä signaalin segmentointiin ja kuvaavien piirteiden irroittamiseen matalantason anturitiedosta. Tutkimuksen tuloksena saatiin parannuksia erottelevien mallien oppimiseen rakenteellisesta anturitiedosta sekä erityisesti uusia menettelyjä tilannetiedon tunnistamiseen
Morgan, Bo. "Learning commonsense human-language descriptions from temporal and spatial sensor-network data". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37383.
Pełny tekst źródłaIncludes bibliographical references (p. 105-109) and index.
Embedded-sensor platforms are advancing toward such sophistication that they can differentiate between subtle actions. For example, when placed in a wristwatch, such platforms can tell whether a person is shaking hands or turning a doorknob. Sensors placed on objects in the environment now report many parameters, including object location, movement, sound, and temperature. A persistent problem, however, is the description of these sense data in meaningful human-language. This is an important problem that appears across domains ranging from organizational security surveillance to individual activity journaling. Previous models of activity recognition pigeon-hole descriptions into small, formal categories specified in advance; for example, location is often categorized as "at home" or "at the office." These models have not been able to adapt to the wider range of complex, dynamic, and idiosyncratic human activities. We hypothesize that the commonsense, semantically related, knowledge bases can be used to bootstrap learning algorithms for classifying and recognizing human activities from sensors.
(cont.) Our system, LifeNet, is a first-person commonsense inference model, which consists of a graph with nodes drawn from a large repository of commonsense assertions expressed in human-language phrases. LifeNet is used to construct a mapping between streams of sensor data and partially ordered sequences of events, co-located in time and space. Further, by gathering sensor data in vivo, we are able to validate and extend the commonsense knowledge from which LifeNet is derived. LifeNet is evaluated in the context of its performance on a sensor-network platform distributed in an office environment. We hypothesize that mapping sensor data into LifeNet will act as a "semantic mirror" to meaningfully interpret sensory data into cohesive patterns in order to understand and predict human action.
by Bo Morgan.
S.M.
Hjelm, Hans. "Cross-language Ontology Learning : Incorporating and Exploiting Cross-language Data in the Ontology Learning Process". Doctoral thesis, Stockholms universitet, Institutionen för lingvistik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8414.
Pełny tekst źródłaFör att köpa boken skicka en beställning till exp@ling.su.se/ To order the book send an e-mail to exp@ling.su.se
Kaden, Marika. "Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models". Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-206413.
Pełny tekst źródłaNasiri, Khoozani Ehsan. "An ontological framework for the formal representation and management of human stress knowledge". Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/2220.
Pełny tekst źródłaMakarand, Tare, i tmakarand@swin edu au. "A future for human resources: A Specialised role in knowledge management". Swinburne University of Technology. School of Business, 2003. http://adt.lib.swin.edu.au./public/adt-VSWT20040311.093956.
Pełny tekst źródłaMichieletto, Stefano. "Robot Learning by observing human actions". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423766.
Pełny tekst źródłaLa robotica sta ormai entrando nella nostra vita. Si possono trovare robot nelle industrie, negli uffici e perfino nelle case. Più i robot sono in contatto con le persone, più aumenta la richiesta di nuove funzionalità e caratteristiche per rendere i robot capaci di agire in caso di necessità, aiutare la gente o di essere di compagnia. Perciò è essenziale avere un modo rapido e facile di insegnare ai robot nuove abilità e questo è proprio l'obiettivo del Robot Learning from Demonstration. Questo paradigma consente di programmare nuovi task in un robot attraverso l'uso di dimostrazioni. Questa tesi propone un nuovo approccio al Robot Learning from Demonstration in grado di apprendere nuove abilità da dimostrazioni eseguite naturalmente da utenti inesperti. A questo scopo, è stato introdotto un innovativo framework per il Robot Learning from Demonstration proponendo nuovi approcci in tutte le sub-unità funzionali: dall'acquisizione dei dati all’elaborazione del movimento, dalla modellazione delle informazioni al controllo del robot. All’interno di questo lavoro è stato proposto un nuovo metodo per estrarre l’ informazione del flusso ottico 3D, combinando dati RGB e di profondità acquisiti tramite telecamere RGB-D introdotte di recente nel mercato consumer. Questo algoritmo calcola i dati di movimento lungo il tempo per riconoscere e classificare le azioni umane. In questa tesi, sono descritte nuove tecniche per rimappare il movimento umano alle articolazioni robotiche. I metodi proposti permettono alle persone di interagire in modo naturale con i robot effettuando un re-targeting intuitivo di tutti i movimenti del corpo. È stato sviluppato un algoritmo di re-targeting del movimento sia per robot umanoidi che per manipolatori, testando entrambi in diverse situazioni. Infine, sono state migliorate le tecniche di modellazione utilizzando un metodo probabilistico: il Donut Mixture Model. Questo modello è in grado di gestire le numerose interpretazioni che persone diverse possono produrre eseguendo un compito. Inoltre, il modello stimato può essere aggiornato utilizzando direttamente tentativi effettuati dal robot. Questa caratteristica è molto importante per ottenere rapidamente traiettorie robot corrette, mediante l’uso di poche dimostrazioni umane. Un ulteriore contributo di questa tesi è la creazione di una serie di nuovi modelli virtuali per i diversi robot utilizzati per testare i nostri algoritmi. Tutti i modelli sviluppati sono compatibili con ROS, in modo che possano essere utilizzati da tutta la comunità di questo framework per la robotica molto diffuso per promuovere la ricerca nel campo. Inoltre, è stato raccolto un nuovo dataset 3D al fine di confrontare diversi algoritmi di riconoscimento delle azioni, il dataset contiene sia informazioni RGB-D provenienti direttamente dal sensore che informazioni sullo scheletro fornite da uno skeleton tracker.
Chen, Zhiang. "Deep-learning Approaches to Object Recognition from 3D Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1496303868914492.
Pełny tekst źródłaGoldstein, Adam B. "Responding to Moments of Learning". Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/685.
Pełny tekst źródłaEdman, Anneli. "Combining Knowledge Systems and Hypermedia for User Co-operation and Learning". Doctoral thesis, Uppsala : Dept. of Information Science [Institutionen för informationsvetenskap], Univ, 2001. http://publications.uu.se/theses/91-506-1526-2/.
Pełny tekst źródłaSnyders, Sean. "Inductive machine learning bias in knowledge-based neurocomputing". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53463.
Pełny tekst źródłaENGLISH ABSTRACT: The integration of symbolic knowledge with artificial neural networks is becoming an increasingly popular paradigm for solving real-world problems. This paradigm named knowledge-based neurocomputing, provides means for using prior knowledge to determine the network architecture, to program a subset of weights to induce a learning bias which guides network training, and to extract refined knowledge from trained neural networks. The role of neural networks then becomes that of knowledge refinement. It thus provides a methodology for dealing with uncertainty in the initial domain theory. In this thesis, we address several advantages of this paradigm and propose a solution for the open question of determining the strength of this learning, or inductive, bias. We develop a heuristic for determining the strength of the inductive bias that takes the network architecture, the prior knowledge, the learning method, and the training data into consideration. We apply this heuristic to well-known synthetic problems as well as published difficult real-world problems in the domain of molecular biology and medical diagnoses. We found that, not only do the networks trained with this adaptive inductive bias show superior performance over networks trained with the standard method of determining the strength of the inductive bias, but that the extracted refined knowledge from these trained networks deliver more concise and accurate domain theories.
AFRIKAANSE OPSOMMING: Die integrasie van simboliese kennis met kunsmatige neurale netwerke word 'n toenemende gewilde paradigma om reelewereldse probleme op te los. Hierdie paradigma genoem, kennis-gebaseerde neurokomputasie, verskaf die vermoe om vooraf kennis te gebruik om die netwerkargitektuur te bepaal, om a subversameling van gewigte te programeer om 'n leersydigheid te induseer wat netwerkopleiding lei, en om verfynde kennis van geleerde netwerke te kan ontsluit. Die rol van neurale netwerke word dan die van kennisverfyning. Dit verskaf dus 'n metodologie vir die behandeling van onsekerheid in die aanvangsdomeinteorie. In hierdie tesis adresseer ons verskeie voordele wat bevat is in hierdie paradigma en stel ons 'n oplossing voor vir die oop vraag om die gewig van hierdie leer-, of induktiewe sydigheid te bepaal. Ons ontwikkel 'n heuristiek vir die bepaling van die induktiewe sydigheid wat die netwerkargitektuur, die aanvangskennis, die leermetode, en die data vir die leer proses in ag neem. Ons pas hierdie heuristiek toe op bekende sintetiese probleme so weI as op gepubliseerde moeilike reelewereldse probleme in die gebied van molekulere biologie en mediese diagnostiek. Ons bevind dat, nie alleenlik vertoon die netwerke wat geleer is met die adaptiewe induktiewe sydigheid superieure verrigting bo die netwerke wat geleer is met die standaardmetode om die gewig van die induktiewe sydigheid te bepaal nie, maar ook dat die verfynde kennis wat ontsluit is uit hierdie geleerde netwerke meer bondige en akkurate domeinteorie lewer.
Sun, Feng-Tso. "Nonparametric Discovery of Human Behavior Patterns from Multimodal Data". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/359.
Pełny tekst źródłaBoulis, Constantinos. "Topic learning in text and conversational speech /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/5914.
Pełny tekst źródłaFu, Tianjun. "CSI in the Web 2.0 Age: Data Collection, Selection, and Investigation for Knowledge Discovery". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/217073.
Pełny tekst źródła