Artykuły w czasopismach na temat „Darcy flow model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Darcy flow model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Yuan, Yu-long Niu i Qiang Feng. "Study on the REV Size of Fractured Rock in the Non-Darcy Flow Based on the Dual-Porosity Model". Geofluids 2018 (2018): 1–22. http://dx.doi.org/10.1155/2018/7535927.
Pełny tekst źródłaDi Nucci, Carmine, i Daniele Celli. "From Darcy Equation to Darcy Paradox". Fluids 7, nr 4 (22.03.2022): 120. http://dx.doi.org/10.3390/fluids7040120.
Pełny tekst źródłaYang, Bin, Tianhong Yang, Zenghe Xu, Honglei Liu, Wenhao Shi i Xin Yang. "Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study". Royal Society Open Science 5, nr 2 (luty 2018): 172109. http://dx.doi.org/10.1098/rsos.172109.
Pełny tekst źródłaLai, Bitao, Jennifer L. Miskimins i Yu-Shu Wu. "Non-Darcy Porous-Media Flow According to the Barree and Conway Model: Laboratory and Numerical-Modeling Studies". SPE Journal 17, nr 01 (19.10.2011): 70–79. http://dx.doi.org/10.2118/122611-pa.
Pełny tekst źródłaSefidgar, Mostafa, M. Soltani, Kaamran Raahemifar i Hossein Bazmara. "Effect of Fluid Friction on Interstitial Fluid Flow Coupled with Blood Flow through Solid Tumor Microvascular Network". Computational and Mathematical Methods in Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/673426.
Pełny tekst źródłaFu, Xiang, Xiang Fang Li, Shi Qing Cheng, Liang Huang i Xiang Rong Nie. "Pressure Behavior of a Coupling Model with Variable Permeability Effect". Applied Mechanics and Materials 152-154 (styczeń 2012): 364–68. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.364.
Pełny tekst źródłaFu, Xiang, Xiang Fang Li, Shi Qing Cheng, Liang Huang i Xiang Rong Nie. "Pressure Behavior of a Coupling Model with Variable Permeability Effect". Applied Mechanics and Materials 152-154 (styczeń 2012): 689–93. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.689.
Pełny tekst źródłaAryanti, N., Y. Bindar i I. G. Wenten. "Two Dimentional Numerical Models Of Hollow Fiber Membrane Contactor". REAKTOR 6, nr 2 (19.06.2017): 77. http://dx.doi.org/10.14710/reaktor.6.2.77-84.
Pełny tekst źródłaHdhiri, Najib, i Brahim Ben Beya. "Numerical study of laminar mixed convection flow in a lid-driven square cavity filled with porous media". International Journal of Numerical Methods for Heat & Fluid Flow 28, nr 4 (3.04.2018): 857–77. http://dx.doi.org/10.1108/hff-04-2016-0146.
Pełny tekst źródłaYan, Liang Dong, Zhi Juan Gao i Feng Gang Dai. "Effective use Model of Low Permeability Oil Reservoir". Advanced Materials Research 753-755 (sierpień 2013): 53–57. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.53.
Pełny tekst źródłaZhang, Feng, i Daoyong Yang. "Determination of Fracture Conductivity in Tight Formations With Non-Darcy Flow Behavior". SPE Journal 19, nr 01 (28.08.2013): 34–44. http://dx.doi.org/10.2118/162548-pa.
Pełny tekst źródłaZhang, Longjun, Daolun Li, Lei Wang i Detang Lu. "Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid". Journal of Chemistry 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/572434.
Pełny tekst źródłaLi, Juhua, i Chen Chen. "Numerical Simulation of the Non-Darcy Flow Based on Random Fractal Micronetwork Model for Low Permeability Sandstone Gas Reservoirs". Geofluids 2020 (9.10.2020): 1–9. http://dx.doi.org/10.1155/2020/8884885.
Pełny tekst źródłaXu, Hui, Nannan Liu, Yan Chen, Yapeng Tian, Zhenghuai Guo, Wanjun Jiang i Yanfeng He. "A Novel Equivalent Numerical Simulation Method for Non-Darcy Seepage Flow in Low-Permeability Reservoirs". Energies 15, nr 22 (14.11.2022): 8505. http://dx.doi.org/10.3390/en15228505.
Pełny tekst źródłaJiang, Liwu, Tongjing Liu i Daoyong Yang. "A Semianalytical Model for Predicting Transient Pressure Behavior of a Hydraulically Fractured Horizontal Well in a Naturally Fractured Reservoir With Non-Darcy Flow and Stress-Sensitive Permeability Effects". SPE Journal 24, nr 03 (20.03.2019): 1322–41. http://dx.doi.org/10.2118/194501-pa.
Pełny tekst źródłaHagoort, Jacques. "An Improved Model for Estimating Flow Impairment by Perforation Damage". SPE Journal 12, nr 02 (1.06.2007): 235–44. http://dx.doi.org/10.2118/98137-pa.
Pełny tekst źródłaSong, Hong Qing, Ming Yue, Wei Yao Zhu, Dong Bo He i Huai Jian Yi. "Formation Pressure Analysis of Water-Bearing Tight Gas Reservoirs with Unsteady Low-Velocity Non-Darcy Flow". Advanced Materials Research 201-203 (luty 2011): 399–403. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.399.
Pełny tekst źródłaTrilok, G., i N. Gnanasekaran. "Comparison of Numerical Models of Flow and Heat Transfer Through Porous Medium in a Vertical Channel". IOP Conference Series: Earth and Environmental Science 850, nr 1 (1.11.2021): 012023. http://dx.doi.org/10.1088/1755-1315/850/1/012023.
Pełny tekst źródłaChen, Jie, Shuyu Sun i Zhangxin Chen. "Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media". Advances in Mechanical Engineering 6 (1.01.2014): 871021. http://dx.doi.org/10.1155/2014/871021.
Pełny tekst źródłaAkanni, Olatokunbo O., Hisham A. Nasr-El-Din i Deepak Gusain. "A Computational Navier-Stokes Fluid-Dynamics-Simulation Study of Wormhole Propagation in Carbonate-Matrix Acidizing and Analysis of Factors Influencing the Dissolution Process". SPE Journal 22, nr 06 (4.10.2017): 2049–66. http://dx.doi.org/10.2118/187962-pa.
Pełny tekst źródłaShao, Jianli, Qi Zhang, Wenbin Sun, Zaiyong Wang i Xianxiang Zhu. "Numerical Simulation on Non-Darcy Flow in a Single Rock Fracture Domain Inverted by Digital Images". Geofluids 2020 (27.06.2020): 1–13. http://dx.doi.org/10.1155/2020/8814327.
Pełny tekst źródłaDeng, Jia, Wei Yao Zhu, Qian Ma i Huai Jian Yi. "Study on the Unstable Seepage Flow Model and the Productivity Characteristics in Tight Gas Heterogeneity Reservoir". Advanced Materials Research 868 (grudzień 2013): 465–72. http://dx.doi.org/10.4028/www.scientific.net/amr.868.465.
Pełny tekst źródłaWANG, FUYONG, ZHICHAO LIU, JIANCHAO CAI i JIAN GAO. "A FRACTAL MODEL FOR LOW-VELOCITY NON-DARCY FLOW IN TIGHT OIL RESERVOIRS CONSIDERING BOUNDARY-LAYER EFFECT". Fractals 26, nr 05 (październik 2018): 1850077. http://dx.doi.org/10.1142/s0218348x18500779.
Pełny tekst źródłaLei, Xiao, Mu Wang Wu, Feng Bo Zhang, Shuang Qi Liu, Yao Quan Xiang, Wei Xing Lan i Hai Yang Yu. "Variable-Permeability Well Test Model and Pressure Response of Non-Darcy Flow in Low-Permeability Reservoirs". Applied Mechanics and Materials 644-650 (wrzesień 2014): 5097–100. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.5097.
Pełny tekst źródłaXue, Yi, Yang Liu, Faning Dang, Jia Liu, Zongyuan Ma, Lin Zhu i Hongwei Yang. "Assessment of the Nonlinear Flow Characteristic of Water Inrush Based on the Brinkman and Forchheimer Seepage Model". Water 11, nr 4 (24.04.2019): 855. http://dx.doi.org/10.3390/w11040855.
Pełny tekst źródłaCui, Changzhi, i Kyosuke Ono. "Theoretical and Experimental Investigation of an Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design". Journal of Tribology 119, nr 3 (1.07.1997): 486–92. http://dx.doi.org/10.1115/1.2833524.
Pełny tekst źródłaSkrzypacz, Piotr, i Dongming Wei. "Solvability of the Brinkman-Forchheimer-Darcy Equation". Journal of Applied Mathematics 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/7305230.
Pełny tekst źródłaCui, Shuheng, Jie Kong, Hongwei Yu, Cheng Chen i Junlei Wang. "Revising Transient-Pressure Solution for Vertical Well Intersected by a Partially Penetrating Fracture with Non-Darcy Flow Effect". Geofluids 2020 (26.11.2020): 1–17. http://dx.doi.org/10.1155/2020/8884750.
Pełny tekst źródłaAnsari, Shahab U., Masroor Hussain, Sarvat M. Ahmad, Ahmar Rashid i Suleman Mazhar. "STABILIZED MIXED FINITE ELEMENT METHOD FOR TRANSIENT DARCY FLOW". Transactions of the Canadian Society for Mechanical Engineering 41, nr 1 (marzec 2017): 85–97. http://dx.doi.org/10.1139/tcsme-2017-1006.
Pełny tekst źródłaLage, J. L., i B. V. Antohe. "Darcy’s Experiments and the Deviation to Nonlinear Flow Regime". Journal of Fluids Engineering 122, nr 3 (26.04.2000): 619–25. http://dx.doi.org/10.1115/1.1287722.
Pełny tekst źródłaWanjing, Luo, i Tang Changfu. "A Semianalytical Solution of a Vertical Fractured Well With Varying Conductivity Under Non-Darcy-Flow Condition". SPE Journal 20, nr 05 (20.10.2015): 1028–40. http://dx.doi.org/10.2118/178423-pa.
Pełny tekst źródłaMustafa, Irfan, Abuzar Ghaffari, Tariq Javed i Javeria Nawaz Abbasi. "Numerical Examination of Thermophysical Properties of Cobalt Ferroparticles over a Wavy Surface Saturated in Non-Darcian Porous Medium". Journal of Non-Equilibrium Thermodynamics 45, nr 2 (26.04.2020): 109–20. http://dx.doi.org/10.1515/jnet-2019-0019.
Pełny tekst źródłaJuncu, Gheorghe. "Brinkman – Forchheimer – Darcy Flow Past an Impermeable Sphere Embedded in a Porous Medium". Analele Universitatii "Ovidius" Constanta - Seria Matematica 23, nr 3 (1.11.2015): 97–112. http://dx.doi.org/10.1515/auom-2015-0050.
Pełny tekst źródłaKnabner, Peter, i Jean E. Roberts. "Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy–Forchheimer flow in the fracture". ESAIM: Mathematical Modelling and Numerical Analysis 48, nr 5 (13.08.2014): 1451–72. http://dx.doi.org/10.1051/m2an/2014003.
Pełny tekst źródłaXIAO, BOQI, YONGHUI LIU, HANXIN CHEN, XUBING CHEN i GONGBO LONG. "A NOVEL FRACTAL SOLUTION FOR LAMINAR FLOW RESISTANCE IN ROUGHENED CYLINDRICAL MICROCHANNELS". Fractals 28, nr 06 (wrzesień 2020): 2050097. http://dx.doi.org/10.1142/s0218348x20500978.
Pełny tekst źródłaSakamoto, H., i F. A. Kulacki. "Buoyancy Driven Flow in Saturated Porous Media". Journal of Heat Transfer 129, nr 6 (24.09.2006): 727–34. http://dx.doi.org/10.1115/1.2717937.
Pełny tekst źródłaEttefagh, J., K. Vafai i S. J. Kim. "Non-Darcian Effects in Open-Ended Cavities Filled With a Porous Medium". Journal of Heat Transfer 113, nr 3 (1.08.1991): 747–56. http://dx.doi.org/10.1115/1.2910627.
Pełny tekst źródłaLiu, Piyang, Xiaoxia Ren, Liang Kong i Jun Yao. "Three-dimensional simulation of acidizing process in carbonate rocks using the Darcy–Forchheimer framework". Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 75 (2020): 48. http://dx.doi.org/10.2516/ogst/2020035.
Pełny tekst źródłaWu, Zhongwei, Chuanzhi Cui, Japan Trivedi, Ning Ai i Wenhao Tang. "Pressure Analysis for Volume Fracturing Vertical Well considering Low-Velocity Non-Darcy Flow and Stress Sensitivity". Geofluids 2019 (20.11.2019): 1–10. http://dx.doi.org/10.1155/2019/2046061.
Pełny tekst źródłaTang, Yula, Turhan Yildiz, Erdal Ozkan i Mohan G. Kelkar. "Effects of Formation Damage and High- Velocity Flow on the Productivity of Perforated Horizontal Wells". SPE Reservoir Evaluation & Engineering 8, nr 04 (1.08.2005): 315–24. http://dx.doi.org/10.2118/77534-pa.
Pełny tekst źródłaGuo, Zhanwei, i Jincheng Shi. "Structural stability for the Darcy model in double diffusive convection flow with Magnetic field effect". AIMS Mathematics 7, nr 9 (2022): 16366–86. http://dx.doi.org/10.3934/math.2022894.
Pełny tekst źródłaHuang, Ting, Xiao Guo i Kun Wang. "Nonlinear Seepage Model of Gas Transport in Multiscale Shale Gas Reservoirs and Productivity Analysis of Fractured Well". Journal of Chemistry 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/349507.
Pełny tekst źródłaWang, Jingyu, Jian Yang, Long Li, Pei Qian i Qiuwang Wang. "Numerical simulation and circuit network modelling of flow distributions in 2-D array configurations". Thermal Science 22, nr 5 (2018): 1987–98. http://dx.doi.org/10.2298/tsci171230256w.
Pełny tekst źródłaKrotkiewski, Marcin, Ingeborg S. Ligaarden, Knut-Andreas Lie i Daniel W. Schmid. "On the Importance of the Stokes-Brinkman Equations for Computing Effective Permeability in Karst Reservoirs". Communications in Computational Physics 10, nr 5 (listopad 2011): 1315–32. http://dx.doi.org/10.4208/cicp.290610.020211a.
Pełny tekst źródłaHamdan, Mohammad. "An empirical correlation for isothermal parallel plate channel completely filled with porous media". Thermal Science 17, nr 4 (2013): 1061–70. http://dx.doi.org/10.2298/tsci120419015h.
Pełny tekst źródłaGruais, Isabelle, i Dan Poliševski. "Thermal flows in fractured porous media". ESAIM: Mathematical Modelling and Numerical Analysis 55, nr 3 (maj 2021): 789–805. http://dx.doi.org/10.1051/m2an/2020087.
Pełny tekst źródłaCivan, F., C. S. S. Rai i C. H. H. Sondergeld. "Determining Shale Permeability to Gas by Simultaneous Analysis of Various Pressure Tests". SPE Journal 17, nr 03 (16.08.2012): 717–26. http://dx.doi.org/10.2118/144253-pa.
Pełny tekst źródłaEroglu, Fatma G., Songul Kaya i Leo G. Rebholz. "POD-ROM for the Darcy–Brinkman equations with double-diffusive convection". Journal of Numerical Mathematics 27, nr 3 (25.09.2019): 123–39. http://dx.doi.org/10.1515/jnma-2017-0122.
Pełny tekst źródłaWU, JINSUI, DEZHI HU, WENJUN LI i XIN CAI. "A REVIEW ON NON-DARCY FLOW — FORCHHEIMER EQUATION, HYDRAULIC RADIUS MODEL, FRACTAL MODEL AND EXPERIMENT". Fractals 24, nr 02 (czerwiec 2016): 1630001. http://dx.doi.org/10.1142/s0218348x16300014.
Pełny tekst źródłaNaderi, Masoud, Hossein Afzalimehr, Ayoub Dehghan, Nader Darban, Mohammad Nazari-Sharabian i Moses Karakouzian. "Field Study of Three–Parameter Flow Resistance Model in Rivers with Vegetation Patch". Fluids 7, nr 8 (22.08.2022): 284. http://dx.doi.org/10.3390/fluids7080284.
Pełny tekst źródła