Gotowa bibliografia na temat „Damage Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Damage Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Damage Detection"
Vafaei, Mohammadreza, Azlan bin Adnan i Mohammadreza Yadollahi. "Seismic Damage Detection Using Pushover Analysis". Advanced Materials Research 255-260 (maj 2011): 2496–99. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.2496.
Pełny tekst źródłaRaj, R. Melvin, Jyosthna R, Ramya Madhuri N, Akshay Sunny R i Pratima A. "Damage Detection of An Automobile". International Journal of Engineering Research in Computer Science and Engineering 9, nr 10 (13.10.2022): 61–64. http://dx.doi.org/10.36647/ijercse/09.10.art014.
Pełny tekst źródłaZhang, Yu, Xin Feng, Zhe Fan, Shuang Hou, Tong Zhu i Jing Zhou. "Experimental investigations on seismic damage monitoring of concrete dams using distributed lead zirconate titanate sensor network". Advances in Structural Engineering 20, nr 2 (28.07.2016): 170–79. http://dx.doi.org/10.1177/1369433216660002.
Pełny tekst źródłaNASERALAVI, S. S., S. GERIST, E. SALAJEGHEH i J. SALAJEGHEH. "ELABORATE STRUCTURAL DAMAGE DETECTION USING AN IMPROVED GENETIC ALGORITHM AND MODAL DATA". International Journal of Structural Stability and Dynamics 13, nr 06 (2.07.2013): 1350024. http://dx.doi.org/10.1142/s0219455413500247.
Pełny tekst źródłaPark, Sang-Eun, i Yoon Taek Jung. "Detection of Earthquake-Induced Building Damages Using Polarimetric SAR Data". Remote Sensing 12, nr 1 (1.01.2020): 137. http://dx.doi.org/10.3390/rs12010137.
Pełny tekst źródłaCarminati, M., i S. Ricci. "Structural Damage Detection Using Nonlinear Vibrations". International Journal of Aerospace Engineering 2018 (25.09.2018): 1–21. http://dx.doi.org/10.1155/2018/1901362.
Pełny tekst źródłaStoykov, Stanislav, Emil Manoach i Maosen Cao. "Vibration Based Damage Detection of Rotating Beams". MATEC Web of Conferences 148 (2018): 14008. http://dx.doi.org/10.1051/matecconf/201814814008.
Pełny tekst źródłaAmina Saouab, Hajar Chouiyakh, Mustafa Faqir, Kenza Bouchaala, Fathi Ghanameh i Elhachmi Essadiqi. "Study of Multistage Damage Detection Method Based on Lamb Waves and Thermal Effect". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 93, nr 1 (25.03.2022): 200–211. http://dx.doi.org/10.37934/arfmts.93.1.200211.
Pełny tekst źródłaRiddihough, G. "Damage Detection". Science Signaling 1, nr 24 (17.06.2008): ec227-ec227. http://dx.doi.org/10.1126/scisignal.124ec227.
Pełny tekst źródłaAl Duhayyim, Mesfer, Areej A. Malibari, Abdullah Alharbi, Kallekh Afef, Ayman Yafoz, Raed Alsini, Omar Alghushairy i Heba Mohsen. "Road Damage Detection Using the Hunger Games Search with Elman Neural Network on High-Resolution Remote Sensing Images". Remote Sensing 14, nr 24 (8.12.2022): 6222. http://dx.doi.org/10.3390/rs14246222.
Pełny tekst źródłaRozprawy doktorskie na temat "Damage Detection"
Cockerill, Aaron. "Damage detection of rotating machinery". Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/105671/.
Pełny tekst źródłaDissanayake, Amal S. "Electrostatic discharge damage detection method". Thesis, Kansas State University, 1997. http://hdl.handle.net/2097/13512.
Pełny tekst źródłaAl, Jailawi Samer Saadi Hussein. "Damage detection using angular velocity". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6539.
Pełny tekst źródłaGharibnezhad, Fahit. "Robust damage detection in smart structures". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277544.
Pełny tekst źródłaLa presente tesis doctoral se dedica a la exploración y presentación de técnicas novedosas para la Monitorización y detección de defectos en estructuras (Structural Health Monitoring -SHM-) SHM es un campo actualmente en desarrollo que pretende asegurarse que las estructuras permanecen en su condición deseada para evitar cualquier catástrofe. En SHM se presentan diferentes niveles de diagnóstico, Este trabajo se concentra en el primer nivel, que se considera el más importante, la detección de los defectos. Las nuevas técnicas presentadas en esta tesis se basan en diferentes métodos estadísticos y de procesamiento de señales tales como el Análisis de Componentes Princpales (PCA) y sus variaciones robustas, Transformada wavelets, lógica difusa, gráficas de Andrew, etc. Estas técnicas de aplican sobre las ondas de vibración que se generan y se miden en la estructura utilizando trasductores apropiados. Dispositivos piezocerámicos (PZT's) se han escogido para este trabajo ya que presentan características especiales tales como: alto rendimiento, bajo consumo de energia y bajo costo. Para garantizar la eficacia de la metodología propuesta,se ha validado en diferentes laboratorios y estructuras a escala real: placas de aluminio y de material compuesto, fuselage de un avión, revestimiento del ala de un avóin, tubería, etc. Debido a la gran variedad de estructuras utilizadas, su aplicación en la industria aeroespacial y/o petrolera es prometedora. Por otra parte, los cambios ambientales pueden afectar al rendimiento de la detección de daños y propagación de la onda significativamente . En este trabajo , se estudia el efecto de las variaciones de temperatura ya que es uno de los principales factores de fluctuación del medio ambiente . Para examinar su efecto en la detección de daños, en primer lugar, todos los métodos propuestos se prueban para comprobar si son sensibles a los cambios de temperatura o no. Finalmente , se aplica un método de compensación de temperatura para garantizar que los métodos propuestos son estables y robustos incluso cuando las estructuras se someten a condiciones ambientales variantes
Matlack, Kathryn H. "Nonlinear ultrasound for radiation damage detection". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51965.
Pełny tekst źródłaHuethwohl, Philipp Karl. "Bridge damage detection and BIM mapping". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285562.
Pełny tekst źródłaMalik, Shoaib Ahmad. "Damage detection using self-sensing composites". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1750/.
Pełny tekst źródłaTadros, Nader Nabil Aziz. "Structural damage detection using ambient vibrations". Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18178.
Pełny tekst źródłaDepartment of Civil Engineering
Hani G. Melhem
The objective of this research is to use structure ambient random vibration response to detect damage level and location. The use of ambient vibration is advantageous because excitation is caused by service conditions such as normal vehicle traffic on a highway bridge, train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service. This research developed an approach in which free vibration of a structure is extracted from the response of this structure to a random excitation in the time domain (acceleration versus time) by averaging out the random component of the response. The result is the free vibration that includes all modes based on the sampling rate on time. Then this free vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in frequency response are a function of structural stiffness and member end-conditions. Such variations are used as a measure to identify the change in the structural dynamic properties, and ultimately detect damage. A physical model consisting of a 20 × 20 × 1670 -mm long steel square tube was used to validate this approach. The beam was tested under difference supports conditions varying from a single- to three-span continuous configuration. Random excitation was applied to the beam, and the dynamic response was measured by an accelerometer placed at various locations on the span. A numerical model was constructed in ABAQUS and the dynamic response was obtained from the finite element model subjected to similar excitation as in the physical model. Numerical results were correlated against results from the physical model, and comparison was made between the different span/support configurations. A subsequent step would be to induce damage that simulates loss of stiffness or cracking condition of the beam cross section, and that would be reflected as a change in the frequency and other dynamic properties of the structure. The approach achieved good results for a structure with a limited number of degrees of freedom. Further research is needed for structures with a larger number of degrees of freedom and structures with damage in symmetrical locations relative to the accelerometer position.
Asnaashari, Erfan. "Vibration-based damage detection in structures". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-damage-detection-in-structures(09061582-55fb-4fba-846e-2156dd4ef172).html.
Pełny tekst źródłaDixit, Akash. "Damage modeling and damage detection for structures using a perturbation method". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43575.
Pełny tekst źródłaKsiążki na temat "Damage Detection"
Masters, JE, red. Damage Detection in Composite Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1128-eb.
Pełny tekst źródłaDidenko, Vladimir V., red. Fast Detection of DNA Damage. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7187-9.
Pełny tekst źródłaE, Masters John, i International Symposium on Damage Detection and Quality Assurance in Composite Materials (1990 : San Antonio, Tex.), red. Damage detection in composite materials. Philadelphia, PA: ASTM, 1992.
Znajdź pełny tekst źródłaDidenko, Vladimir V. In Situ Detection of DNA Damage. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592591795.
Pełny tekst źródłaEftekhar Azam, Saeed. Online Damage Detection in Structural Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02559-9.
Pełny tekst źródłaBaruch, Menahem. Damage detection based on reduced measurements. [Haifa]: Technion-Israel Institute of Technology, Faculty of Aerospace Engineering, 1995.
Znajdź pełny tekst źródłaCenter, NASA Glenn Research, red. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Znajdź pełny tekst źródłaDecker, Arthur J. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Znajdź pełny tekst źródłaCenter, NASA Glenn Research, red. Gear damage detection using oil debris analysis. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaMorassi, Antonino, i Fabrizio Vestroni, red. Dynamic Methods for Damage Detection in Structures. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-78777-9.
Pełny tekst źródłaCzęści książek na temat "Damage Detection"
Hirao, Masahiko, i Hirotsugu Ogi. "Creep Damage Detection". W Electromagnetic Acoustic Transducers, 337–45. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_17.
Pełny tekst źródłaXu, You-Lin, i Jia He. "Structural damage detection". W Smart Civil Structures, 333–88. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-15.
Pełny tekst źródłaGhosh, Bidisha, Michael O’Byrne, Franck Schoefs i Vikram Pakrashi. "Surface damage detection". W Image-Based Damage Assessment for Underwater Inspections, 97–126. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351052580-6.
Pełny tekst źródłaFrangopol, Dan M., i Sunyong Kim. "Probabilistic Damage Detection". W Life-Cycle of Structures Under Uncertainty, 51–71. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053283-3.
Pełny tekst źródłaUhl, Tadeusz, Tadeusz Stepinski i Wieslaw Staszewski. "Introduction". W Advanced Structural Damage Detection, 1–15. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch1.
Pełny tekst źródłaKohut, Piotr, i Krzysztof Holak. "Vision-Based Monitoring System". W Advanced Structural Damage Detection, 279–320. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch10.
Pełny tekst źródłaPaćko, Paweł. "Numerical Simulation of Elastic Wave Propagation". W Advanced Structural Damage Detection, 17–56. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch2.
Pełny tekst źródłaGallina, Alberto, Paweł Paćko i Łukasz Ambroziński. "Model Assisted Probability of Detection in Structural Health Monitoring". W Advanced Structural Damage Detection, 57–72. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch3.
Pełny tekst źródłaKlepka, Andrzej. "Nonlinear Acoustics". W Advanced Structural Damage Detection, 73–107. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch4.
Pełny tekst źródłaMańka, Michał, Mateusz Rosiek i Adam Martowicz. "Piezocomposite Transducers for Guided Wavess". W Advanced Structural Damage Detection, 109–39. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch5.
Pełny tekst źródłaStreszczenia konferencji na temat "Damage Detection"
Lestari, W., i S. Hanagud. "Damage Detection Using Experimental Data Based Methods". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1724.
Pełny tekst źródłaGawronski, Wodek, i Jerzy T. Sawicki. "Structural Damage Detection Using Modal Norms". W ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8374.
Pełny tekst źródłaGhazi, Reza Mohammadi, James Long i Oral Buyukozturk. "Structural Damage Detection Based on Energy Transfer Between Intrinsic Modes". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3022.
Pełny tekst źródłaFeng, Wei, Qiaofeng Li i Qiuhai Lu. "A Hierarchical Bayesian Method for Time Domain Structure Damage Detection". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97026.
Pełny tekst źródłaWimmer, Stephanie A., i Virginia G. DeGiorgi. "Damage detection using wavelets". W NDE for Health Monitoring and Diagnostics, redaktor Tribikram Kundu. SPIE, 2003. http://dx.doi.org/10.1117/12.483820.
Pełny tekst źródłaAbdalla, M., i M. Qtaishat. "Damage Detection Using Emi". W 2022 6th European Conference on Electrical Engineering & Computer Science (ELECS). IEEE, 2022. http://dx.doi.org/10.1109/elecs55825.2022.00015.
Pełny tekst źródłaMyers, Oliver J., i Sourav Banerjee. "Coupled Damage Precursor Detection". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8950.
Pełny tekst źródłaZhong, Shuncong, i S. Olutunde Oyadiji. "Wavelet-Based Structural Damage Detection". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35632.
Pełny tekst źródłaDouti, Dam-Bé L., Sherazade Aknoun, Serge Monneret, Christophe Hecquet, Mireille Commandré i Laurent Gallais. "In-line quantitative phase imaging for damage detection and analysis". W SPIE Laser Damage, redaktorzy Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau i MJ Soileau. SPIE, 2014. http://dx.doi.org/10.1117/12.2068178.
Pełny tekst źródłaAdachi, Yukio, Shigeki Unjoh, Masuo Kondoh i Michio Ohsumi. "Nondestructive damage detection and evaluation technique for seismically damaged structures". W Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing, redaktor Steven B. Chase. SPIE, 1999. http://dx.doi.org/10.1117/12.339935.
Pełny tekst źródłaRaporty organizacyjne na temat "Damage Detection"
Farrar, Charles R., Keith Worden, Michael D. Todd, Gyuhae Park, Jonathon Nichols, Douglas E. Adams, Matthew T. Bement i Kevin Farinholt. Nonlinear System Identification for Damage Detection. Office of Scientific and Technical Information (OSTI), listopad 2007. http://dx.doi.org/10.2172/922532.
Pełny tekst źródłaMiller, Tim, i R. Lasser. Composite Damage Detection Using Novel Experimental Methods. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada407271.
Pełny tekst źródłaHartman, George A. Infrared Damage Detection System (IDDS) for Real-Time, Small-Scale Damage Monitoring. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2007. http://dx.doi.org/10.21236/ada467885.
Pełny tekst źródłaMiller, T. C., Bob Lasser i Burt VanderHeiden. Composite Damage Detection Using a Novel Ultrasonic Method. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2003. http://dx.doi.org/10.21236/ada410224.
Pełny tekst źródłaMishra, Pranay, Asha Hall i Michael Coatney. Embedded Carbon Nanotube Networks for Damage Precursor Detection. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2014. http://dx.doi.org/10.21236/ada599174.
Pełny tekst źródłaHaworth, W. L. Fatigue Damage Detection in Steels by Optical Correlation. Fort Belvoir, VA: Defense Technical Information Center, marzec 1985. http://dx.doi.org/10.21236/ada155830.
Pełny tekst źródłaRahmani, Mehran, Xintong Ji i Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, wrzesień 2022. http://dx.doi.org/10.31979/mti.2022.2033.
Pełny tekst źródłaBily, Mollie A., Young W. Kwon i Randall D. Pollak. Damage Detection in Composite Interfaces through Carbon Nanotube Reinforcement. Fort Belvoir, VA: Defense Technical Information Center, luty 2010. http://dx.doi.org/10.21236/ada516359.
Pełny tekst źródłaIslam, Abu S., i Kevin Craig. Damage Detection and Mitigation of Composite Structures using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1993. http://dx.doi.org/10.21236/ada261121.
Pełny tekst źródłaClark, G., C. Robbins, K. Wade i P. Souza. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry. Office of Scientific and Technical Information (OSTI), marzec 2009. http://dx.doi.org/10.2172/971773.
Pełny tekst źródła