Gotowa bibliografia na temat „Cyclohexane Separation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cyclohexane Separation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cyclohexane Separation"
Karpińska, M., M. Wlazło, D. Ramjugernath, P. Naidoo i U. Domańska. "Assessment of certain ionic liquids for separation of binary mixtures based on gamma infinity data measurements". RSC Advances 7, nr 12 (2017): 7092–107. http://dx.doi.org/10.1039/c6ra25208g.
Pełny tekst źródłaMohamad Azmi, Bustam-Khalil, Abdul Hannan Muhamad, Girma Gonfa i Zakaria Man. "Benzene and Cyclohexane Separation Using 1-Propanenitrile-3-butylimidazolium Dicyanamide Ionic Liquid". Advanced Materials Research 879 (styczeń 2014): 58–62. http://dx.doi.org/10.4028/www.scientific.net/amr.879.58.
Pełny tekst źródłaHong, Yun, Yanxiong Fang, Dalei Sun i Xiantai Zhou. "Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane". Open Chemistry 17, nr 1 (21.08.2019): 639–46. http://dx.doi.org/10.1515/chem-2019-0068.
Pełny tekst źródłaRichard, Bradley, Mohammad Azmi Bustam i Girma Gonfa. "Separation of Benzene and Cyclohexane with Mixed Solvent Using Extractive Distillation". Applied Mechanics and Materials 625 (wrzesień 2014): 578–81. http://dx.doi.org/10.4028/www.scientific.net/amm.625.578.
Pełny tekst źródłaNavarro, Pablo, Antonio Ovejero-Pérez, Miguel Ayuso, Noemí Delgado-Mellado, Marcos Larriba, Julián García i Francisco Rodríguez. "Cyclohexane/cyclohexene separation by extractive distillation with cyano-based ionic liquids". Journal of Molecular Liquids 289 (wrzesień 2019): 111120. http://dx.doi.org/10.1016/j.molliq.2019.111120.
Pełny tekst źródłaChen, Liangji, Hao Zhang, Yingxiang Ye, Zhen Yuan, Jiaqi Wang, Yisi Yang, Si Lin, Fahui Xiang, Shengchang Xiang i Zhangjing Zhang. "Microporous polycarbazole frameworks with large conjugated π systems for cyclohexane separation from cyclohexane-containing mixtures". New Journal of Chemistry 45, nr 47 (2021): 22437–43. http://dx.doi.org/10.1039/d1nj04968b.
Pełny tekst źródłaDing, Yanjun, Lukman O. Alimi, Basem Moosa, Carine Maaliki, Johan Jacquemin, Feihe Huang i Niveen M. Khashab. "Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages". Chemical Science 12, nr 14 (2021): 5315–18. http://dx.doi.org/10.1039/d1sc00440a.
Pełny tekst źródłaHadj-Kali, Mohamed K., M. Zulhaziman M. Salleh, Irfan Wazeer, Ahmad Alhadid i Sarwono Mulyono. "Separation of Benzene and Cyclohexane Using Eutectic Solvents with Aromatic Structure". Molecules 27, nr 13 (23.06.2022): 4041. http://dx.doi.org/10.3390/molecules27134041.
Pełny tekst źródłaOkushita, H. "Synthesis of polyoxyethylene grafting nylon 6 and the selective separation of cyclohexane/cyclohexanone/cyclohexanol mixture through its membranes". Journal of Membrane Science 112, nr 1 (3.04.1996): 91–100. http://dx.doi.org/10.1016/0376-7388(95)00280-4.
Pełny tekst źródłaShen, J. N., L. G. Wu, H. L. Chen i C. J. Gao. "Separation cyclohexene/cyclohexane mixtures with facilitated transport membrane of poly(vinyl alcohol)–Co2+". Separation and Purification Technology 45, nr 2 (październik 2005): 103–8. http://dx.doi.org/10.1016/j.seppur.2005.02.013.
Pełny tekst źródłaRozprawy doktorskie na temat "Cyclohexane Separation"
Yu, Chia-Chen, i 游嘉珍. "Separation of the benzene/cyclohexane mixture by a distillative crystallization technology". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/17069776889587692001.
Pełny tekst źródła長庚大學
化工與材料工程研究所
95
A distillative crystallization technology, called distillative freezing (DF), is introduced to separate the benzene(Bz)/cyclohexane(Cx) mixture. Basically, DF is a distillative crystallization technology, which combines distillation and crystallization to produce pure crystals. A model is proposed to simulate the DF process in a series of N equilibrium stage operation, where each stage is operated under an adiabatic condition at a three phase equilibrium. To account for the nonideality of Bz/Cx liquid solution, the activity coefficients from the Wilson equation are incorporated to determine the three phase equilibrium conditions during the DF process. The experiments show that three DF operations are required to purify Cx (B) from to in the Cx-rich mixture. On the other hand, only one DF operation is required to purify Bz (A) mixture from to in the Bz-rich mixture. Thus, it is easier to separate Bz from the Bz-rich mixture than to separate Cx from the Cx-rich mixture. These experimental results are consistent with the DF simulations predicted by the proposed model.
Yeh, Hsing-Hsian, i 葉興憲. "Feasibility Study for the Separation of n-Hexane and Cyclohexane by Supercritical Fluid Chromatography with Molecular Sieve 5A". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/76938089045520181571.
Pełny tekst źródła義守大學
化學工程學系暨生物技術與化學工程研究所
104
This study uses supercritical fluid chromatography (SFC) to investigate the retention behavior of n-Hexane and cyclohexane on the molecular sieves. The isotherms and dispersion coefficients of the cyclohexane in the bed of molecular sieves are obtained by curve fitting from the spectrum of SFC. The studied pressures are 1000, 1500, and 2000 psi, the investigated temperatures are 40, 50, and 60 ℃, and the flow rate of carbon dioxide is 2.0 g/min. The experimental results showed that both the temperature and pressure can affect the isotherms, but the retention behaviors of n-hexane and cyclohexane on the molecular sieves have no significant difference. This study provides a fast and simple method to investigate the isotherms of organic compound on solids. In addition, the collected isotherms will also provide useful information for the future application of the separation of cyclohexane.
Ulloa, Charlie Jose. "Remediation of Cellulose Acetate Gas Separation Membranes Contaminated by Heavy Hydrocarbons". Thesis, 2012. http://hdl.handle.net/10012/6598.
Pełny tekst źródłaLin, Yu-Shiuan, i 林育玄. "Selection of Mass Separation Agents for the Cyclohexanone/Cyclohexanol System". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/86939200354326542258.
Pełny tekst źródła東海大學
化學工程與材料工程學系
102
Cyclohexanone is an key intermediate in the production of caprolactam and adipic acid. It either comes from catalytic dehydrogenation of cyclohexanol or from oxidation of cyclohexane. Purification of cyclohexanone is an important step in these process. This study looks into the separation of a cyclohexanol/cyclohexanone mixture, which forms a close-boiling system. Addition of a third component, commonly termed mass separation agent (MSA), can often be used to increase the relative volatility and makes separation easier. This separation means has been investigated in this study. Initially, UNIFAC, UNIFAC-DMD, and COSMO-SAC models have been employed to screen potential MSAs. On the other hand, selectivities of chosen MSAs at infinite dilution were measured by headspace chromatography using a phase ratio variation method. Changes in relative volatility in the presence of the MSAs were also quantified. Diethylene glycol and dimethyl sulfoxide were the final chosen solvents for which ternary vapor-liquid equilibrium data were gathered and fitted with the NRTL model. Simulations and economic analysis have been carried out for extractive distillation processes using these two solvents. Our analysis reveals that diethylene glycol is the most economical solvent for the separation.
LIU, ZU-HAO, i 劉祖澔. "Screening and Assessment of Mixed Solvents for the Cyclohexanone/Cyclohexanol Separation System". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/68249224326768672664.
Pełny tekst źródła東海大學
化學工程與材料工程學系
104
Separation unit is usually the core element of a chemical process. Often to enhance the relative volatility of key components in a separation system in the presence of azeotropes or close boilers, addition of a mass separating agent (MSA) is required. Three thermodynamic models, namely UNIFAC ,UNIFAC-DMD, and COSMO-SAC, have been employed to estimate the selectivity of individual MSA candidate as a screening index. Possibility of synergistic effects for the separation of the cyclohexanol/cyclohexane system through the use of mixed solvents has been explored in the study. A mixed solvent system with DMSO and DG has shown to has such potential. Vapor-liquid equilibrium (VLE) measurements were conducted for the mixed solvent system to fill the VLE data gap. The data obtained were regressed by the NRTL model to yield binary interaction parameters, with which an extractive distillation (ED) system using the mixed solvent was simulated and optimized. Simulation results show that, in term of process economics, the optimal ED process is found when the DMSO/DG blending ratio is 1:3 or 1:1, which is even better than that of the single MSA (DG)-based ED process. With the addition of 30%wt of DMSO/DG mixed solvent (blending ratio 3:1),synergistic effect was also observed in batch distillation experiments, which also agreed well with the simulation results.
Shie, chung yen, i 謝忠諺. "Selection of Mass separating Agent for the Cyclohexanone Process". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/24559659962655661705.
Pełny tekst źródła東海大學
化學工程與材料工程學系
100
Because cyclohexanone/phenol mixture exhibits a binary azeotrope, a third component which is commonly referred to as mass separation agent (MSA) can be added to break the azeotrope and make separation of such a mixture possible via azeotropic distillation or extractive distillation. In this study, we focused on the selection of MSA. First, thermodynamic models were employed to help screen some twenty organic solvents as potential MSA candidates. Three best MSAs were selected, namely propanol, acetone, and butanone. In addition to the three organic solvents, two salts (NaH2PO4 and (NH4)2HPO4), two ionic solutions ([EMIM][PF6] and [BMIM][PF6]), and five other chemicals (TBP, TPP, DPP, TTP and cyclohexanol) covered in prior patents were further assessed and compared in terms of their MSA selectivities at infinite dilution, which were obtained by means of a variable-phase ratio method using headspace gas chromatography. Changes in relative volatility of cyclohexanone to phenol in the presence of these MSAs were also measured at the azeotropic composition. Based on MSA selectivities and changes in relative volatility, acetone and [EMIM][PF6] were screened out. Subsequent vapor-liquid equilibrium data for these two MSAs were measured and fitted with thermodynamic models. Separation systems using the two MSAs were simulated and compared against the one using sulfolane as an MSA. Results of economic analysis showed that acetone was the best MSA among the ones considered.
Części książek na temat "Cyclohexane Separation"
Uragami, Tadashi. "Benzene and Cyclohexane Separation". W Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_49-1.
Pełny tekst źródłaNagy, E., J. Stelmaszek i A. Ujhidy. "Separation of Benzene-Methanol and Benzene-Cyclohexane Mixtures by Pervaporation Process". W Membranes and Membrane Processes, 563–71. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2019-5_55.
Pełny tekst źródłaCavalcante, Célio L., i Douglas M. Ruthven. "Separation of cyclohexane from 2,2 and 2,4 dimethyl pentanes by adsorption in silicalite". W Studies in Surface Science and Catalysis, 1209–16. Elsevier, 1994. http://dx.doi.org/10.1016/s0167-2991(08)63659-9.
Pełny tekst źródłaZhang, Chunyong, i Jiehong Cheng. "Computer aided design of continuous extractive distillation processes for the separation of binary azeotrope: Cyclohexane-ethyl acetate with diethylene glycol". W Advances in Energy Equipment Science and Engineering, 1989–92. CRC Press, 2015. http://dx.doi.org/10.1201/b19126-385.
Pełny tekst źródłaStreszczenia konferencji na temat "Cyclohexane Separation"
Gonfa, Girma, Marhaina Ismail i Mohamad Azmi Bustam. "Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate". W INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4999855.
Pełny tekst źródłaZHU, MINGQIAO, CHAOHONG HE, TINGHUA WU, YAN GUAN, FULIN MAO i YANER ZHOU. "SIMULATION FOR SEPARATION OF CYCLOHEXANE AND BENZENE BY EXTRACTIVE DISTILLATION". W Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0052.
Pełny tekst źródłaBokova, Elena S., Yylia S. Romanova, Maria A. Smulskay i Ivan Y. Filatof. "Development and production of non-woven separation materials for alkaline batteries". W INTERNATIONAL SCIENTIFIC-TECHNICAL SYMPOSIUM (ISTS) «IMPROVING ENERGY AND RESOURCE-EFFICIENT AND ENVIRONMENTAL SAFETY OF PROCESSES AND DEVICES IN CHEMICAL AND RELATED INDUSTRIES». The Kosygin State University of Russia, 2021. http://dx.doi.org/10.37816/eeste-2021-2-183-188.
Pełny tekst źródła