Artykuły w czasopismach na temat „CXCL2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CXCL2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Korbecki, Jan, Klaudyna Kojder, Patrycja Kapczuk, Patrycja Kupnicka, Barbara Gawrońska-Szklarz, Izabela Gutowska, Dariusz Chlubek i Irena Baranowska-Bosiacka. "The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature". International Journal of Molecular Sciences 22, nr 2 (15.01.2021): 843. http://dx.doi.org/10.3390/ijms22020843.
Pełny tekst źródłaTian, He, Liyu Wang, Yu Liu, Yalong Wang, Yujia Zheng, Tao Fan, Bo Zheng i in. "Bioinformatics Analyses Reveals a Comprehensive Landscape of CXC Chemokine Family Functions in Non-Small Cell Lung Cancer". BioMed Research International 2021 (25.01.2021): 1–34. http://dx.doi.org/10.1155/2021/6686158.
Pełny tekst źródłaKorbecki, Jan, Mateusz Bosiacki, Dariusz Chlubek i Irena Baranowska-Bosiacka. "Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes". International Journal of Molecular Sciences 24, nr 17 (27.08.2023): 13287. http://dx.doi.org/10.3390/ijms241713287.
Pełny tekst źródłaYAMAMOTO, YURIE, KENJI KURODA, TOMOHIRO SERA, ATSUSHI SUGIMOTO, SHUHEI KUSHIYAMA, SADAAKI NISHIMURA, SHINGO TOGANO i in. "The Clinicopathological Significance of the CXCR2 Ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer". Anticancer Research 39, nr 12 (grudzień 2019): 6645–52. http://dx.doi.org/10.21873/anticanres.13879.
Pełny tekst źródłaMei, Junjie, M. Anna Kowalska, Ning Dai, Yuhong Liu, Kristin Hudock, Samthamby Jeyaseelan, Janet Lee, Susan Guttentag, Mortimer Poncz i G. Scott Worthen. "Platelet CXCL7 and CXCL4 inhibit chemokine scavenging and improve innate immunity to bacterial infection (P1317)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 63.14. http://dx.doi.org/10.4049/jimmunol.190.supp.63.14.
Pełny tekst źródłaHong, Jung-Hee, i Young-Cheol Lee. "Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro". Life 12, nr 6 (8.06.2022): 857. http://dx.doi.org/10.3390/life12060857.
Pełny tekst źródłaHu, Jing, Qian Ji, Fei Chen, Xiaoqin Gong, Chuansheng Chen, Kaijun Zhang, Ye Hua i in. "CXCR2 Is Essential for Radiation-Induced Intestinal Injury by Initiating Neutrophil Infiltration". Journal of Immunology Research 2022 (16.07.2022): 1–9. http://dx.doi.org/10.1155/2022/7966089.
Pełny tekst źródłaSitu, Yongli, Xiaoyong Lu, Yongshi Cui, Qinying Xu, Li Deng, Hao Lin, Zheng Shao i Jv Chen. "Systematic Analysis of CXC Chemokine–Vascular Endothelial Growth Factor A Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis". BioMed Research International 2022 (4.10.2022): 1–19. http://dx.doi.org/10.1155/2022/5137301.
Pełny tekst źródłaMu, Li, Shun Hu, Guoping Li, Ping Wu, Caihong Ren, Taiyu Lin i Sheng Zhang. "Characterization of the Prognostic Values of CXCL Family in Epstein–Barr Virus Associated Gastric Cancer". Oxidative Medicine and Cellular Longevity 2022 (1.06.2022): 1–24. http://dx.doi.org/10.1155/2022/2218140.
Pełny tekst źródłaSun, Xiaoqi, Qunxi Chen, Lihong Zhang, Jiewei Chen i Xinke Zhang. "Exploration of prognostic biomarkers and therapeutic targets in the microenvironment of bladder cancer based on CXC chemokines". Mathematical Biosciences and Engineering 18, nr 5 (2021): 6262–87. http://dx.doi.org/10.3934/mbe.2021313.
Pełny tekst źródłaRoh, Yoon Seok, Bi Zhang, Rohit Loomba i Ekihiro Seki. "TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration". American Journal of Physiology-Gastrointestinal and Liver Physiology 309, nr 1 (1.07.2015): G30—G41. http://dx.doi.org/10.1152/ajpgi.00031.2015.
Pełny tekst źródłaMalik, Ihtzaz Ahmed, i Giuliano Ramadori. "Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients". Biology 11, nr 3 (18.03.2022): 470. http://dx.doi.org/10.3390/biology11030470.
Pełny tekst źródłaFan, Ning, Shuo Yuan, Yong Hai, Peng Du, Jian Li, Xiaochuan Kong, Wenyi Zhu, Yuzeng Liu i Lei Zang. "Identifying the potential role of IL-1β in the molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis". Journal of Orthopaedic Surgery 30, nr 1 (styczeń 2022): 230949902110682. http://dx.doi.org/10.1177/23094990211068203.
Pełny tekst źródłaCavanagh, P. Craig, Caroline Dunk, Macarena Pampillo, Jacob M. Szereszewski, Jay E. Taylor, Caroline Kahiri, Victor Han, Stephen Lye, Moshmi Bhattacharya i Andy V. Babwah. "Gonadotropin-releasing hormone-regulated chemokine expression in human placentation". American Journal of Physiology-Cell Physiology 297, nr 1 (lipiec 2009): C17—C27. http://dx.doi.org/10.1152/ajpcell.00013.2009.
Pełny tekst źródłaTiwari, Nivedita, Amarnath S. Marudamuthu, Yoshikazu Tsukasaki, Mitsuo Ikebe, Jian Fu i Sreerama Shetty. "p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure". American Journal of Physiology-Lung Cellular and Molecular Physiology 310, nr 6 (15.03.2016): L496—L506. http://dx.doi.org/10.1152/ajplung.00290.2015.
Pełny tekst źródłaLi, Yan, Mingqiang Liang, Yuxiang Lin, Jinxing Lv, Minyan Chen, Peng Zhou, Fangmeng Fu i Chuan Wang. "Transcriptional Expressions of CXCL9/10/12/13 as Prognosis Factors in Breast Cancer". Journal of Oncology 2020 (9.09.2020): 1–15. http://dx.doi.org/10.1155/2020/4270957.
Pełny tekst źródłaPiqueras, Bernard, John Connolly, Heidi Freitas, Anna Karolina Palucka i Jacques Banchereau. "Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors". Blood 107, nr 7 (1.04.2006): 2613–18. http://dx.doi.org/10.1182/blood-2005-07-2965.
Pełny tekst źródłaMarti, Luciana C., Diana Torres Palomino, Camila Bononi Almeida, Denise Cunha Pasqualim, Adriano Cury, Paolo Rogério de Oliveira Salvalaggio, Antonio Luiz Macedo, Patricia Severino i Luiz Vicente Rizzo. "HUMAN LYMPH NODE DERIVED FIBROBLASTIC RETICULAR CELLS AND THEIR CHEMOKINE EXPRESSION PROFILE AFTER AN INFLAMMATORY STIMULUS". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 51.11. http://dx.doi.org/10.4049/jimmunol.196.supp.51.11.
Pełny tekst źródłaLiu, Kaisheng, Minshan Lai, Shaoxiang Wang, Kai Zheng, Shouxia Xie i Xiao Wang. "Construction of a CXC Chemokine-Based Prediction Model for the Prognosis of Colon Cancer". BioMed Research International 2020 (31.03.2020): 1–12. http://dx.doi.org/10.1155/2020/6107865.
Pełny tekst źródłaArsentieva, N. A., N. E. Lyubimova, O. K. Batsunov, A. V. Semenov i A. A. Totolian. "Analysis of blood plasma cytokine profile in healthy residents of the Republic of Guinea". Medical Immunology (Russia) 22, nr 4 (7.08.2020): 765–78. http://dx.doi.org/10.15789/1563-0625-aob-2073.
Pełny tekst źródłaBurke, Susan J., Danhong Lu, Tim E. Sparer, Thomas Masi, Matthew R. Goff, Michael D. Karlstad i J. Jason Collier. "NF-κB and STAT1 control CXCL1 and CXCL2 gene transcription". American Journal of Physiology-Endocrinology and Metabolism 306, nr 2 (15.01.2014): E131—E149. http://dx.doi.org/10.1152/ajpendo.00347.2013.
Pełny tekst źródłaFurue, Masutaka, Kazuhisa Furue, Gaku Tsuji i Takeshi Nakahara. "Interleukin-17A and Keratinocytes in Psoriasis". International Journal of Molecular Sciences 21, nr 4 (13.02.2020): 1275. http://dx.doi.org/10.3390/ijms21041275.
Pełny tekst źródłaCai, Baiyi, Carlene L. Zindl, Daniel J. Silberger, David A. Figge, Jeffery R. Singer, Simon F. Merz, Matthias Gunzer i Casey T. Weaver. "Temporal changes in cellular sources of CXC chemokines control neutrophil recruitment during Citrobacter rodentium infection". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 158.22. http://dx.doi.org/10.4049/jimmunol.204.supp.158.22.
Pełny tekst źródłaLaudanski, Piotr, Adam Lemancewicz, Pawel Kuc, Karol Charkiewicz, Barbara Ramotowska, Malgorzata Kretowska, Elwira Jasinska i in. "Chemokines Profiling of Patients with Preterm Birth". Mediators of Inflammation 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/185758.
Pełny tekst źródłaCarlson, Thaddeus, Mark Kroenke, Praveen Rao, Thomas E. Lane i Benjamin Segal. "The Th17–ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease". Journal of Experimental Medicine 205, nr 4 (17.03.2008): 811–23. http://dx.doi.org/10.1084/jem.20072404.
Pełny tekst źródłaBardi, Gina, Numan Al-Rayan, Jamaal Richie, Kavitha Yaddanapudi i Joshua Hood. "Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference". International Journal of Molecular Sciences 20, nr 5 (12.03.2019): 1235. http://dx.doi.org/10.3390/ijms20051235.
Pełny tekst źródłaDu, Chunmei, Yiguang Zhao, Kun Wang, Xuemei Nan, Ruipeng Chen i Benhai Xiong. "Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model". Nutrients 14, nr 15 (26.07.2022): 3057. http://dx.doi.org/10.3390/nu14153057.
Pełny tekst źródłaHuang, Alex, i Jay Myers. "Live two-photon imaging reveals distinct contribution of neutrophilic and stromal Toll-like receptor 4 in hyper-acute bone marrow response to systemic lipopolysaccharide insult (INC5P.324)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 120.4. http://dx.doi.org/10.4049/jimmunol.192.supp.120.4.
Pełny tekst źródłaDeftu, Antonia-Teona, Alexandru-Florian Deftu i Violeta Ristoiu. "Long-term incubation with CXCL2, but not with CXCL1, alters the kinetics of TRPV1 receptors in cultured dorsal root ganglia neurons". Archives of Biological Sciences 69, nr 1 (2017): 53–59. http://dx.doi.org/10.2298/abs160513074d.
Pełny tekst źródłaSemple, Bridgette D., Thomas Kossmann i Maria Cristina Morganti-Kossmann. "Role of Chemokines in CNS Health and Pathology: A Focus on the CCL2/CCR2 and CXCL8/CXCR2 Networks". Journal of Cerebral Blood Flow & Metabolism 30, nr 3 (11.11.2009): 459–73. http://dx.doi.org/10.1038/jcbfm.2009.240.
Pełny tekst źródłaNavas, Adriana, Deninson Alejandro Vargas, Marina Freudzon, Diane McMahon-Pratt, Nancy Gore Saravia i María Adelaida Gómez. "Chronicity of Dermal Leishmaniasis Caused by Leishmania panamensis Is Associated with Parasite-Mediated Induction of Chemokine Gene Expression". Infection and Immunity 82, nr 7 (21.04.2014): 2872–80. http://dx.doi.org/10.1128/iai.01133-13.
Pełny tekst źródłaTakikawa, Tetsuya, Shin Hamada, Ryotaro Matsumoto, Yu Tanaka, Fumiya Kataoka, Akira Sasaki i Atsushi Masamune. "Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines". International Journal of Molecular Sciences 23, nr 16 (17.08.2022): 9275. http://dx.doi.org/10.3390/ijms23169275.
Pełny tekst źródłaWang, Danlan, Yuanfang Luo, Yonglian Guo, Guohao Li i Fan Li. "A-kinase interacting protein 1, a potential biomarker associated with advanced tumor features and CXCL1/2 in prostate cancer". International Journal of Biological Markers 35, nr 2 (27.04.2020): 74–81. http://dx.doi.org/10.1177/1724600820914944.
Pełny tekst źródłaRainard, P. "Consequences of Interference of Milk with Chemoattractants for Enzyme-Linked Immunosorbent Assay Quantifications". Clinical and Vaccine Immunology 17, nr 5 (17.03.2010): 848–52. http://dx.doi.org/10.1128/cvi.00447-09.
Pełny tekst źródłaLi, Heliang, Linbin Yang i Erwei Song. "Abstract 628: Liver macrophages promote breast cancer liver metastasis through migrating neutrophils and initiating NETosis". Cancer Research 83, nr 7_Supplement (4.04.2023): 628. http://dx.doi.org/10.1158/1538-7445.am2023-628.
Pełny tekst źródłaOliveira, Thiago Henrique Caldeira, Vincent Vanheule, Sofie Vandendriessche, Fariba Poosti, Mauro Martins Teixeira, Paul Proost, Mieke Gouwy i Pedro Elias Marques. "The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice". International Journal of Molecular Sciences 23, nr 17 (26.08.2022): 9715. http://dx.doi.org/10.3390/ijms23179715.
Pełny tekst źródłaUrbantat, Ruth M., Peter Vajkoczy i Susan Brandenburg. "Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma". Cancers 13, nr 12 (15.06.2021): 2983. http://dx.doi.org/10.3390/cancers13122983.
Pełny tekst źródłaMiura, Koshiro, i Yasuko Rikihisa. "Liver Transcriptome Profiles Associated with Strain-Specific Ehrlichia chaffeensis-Induced Hepatitis in SCID Mice". Infection and Immunity 77, nr 1 (10.11.2008): 245–54. http://dx.doi.org/10.1128/iai.00979-08.
Pełny tekst źródłaLepsenyi, Mattias, Nader Algethami, Amr A. Al-Haidari, Anwar Algaber, Ingvar Syk, Milladur Rahman i Henrik Thorlacius. "CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells". Clinical & Experimental Metastasis 38, nr 4 (11.06.2021): 401–10. http://dx.doi.org/10.1007/s10585-021-10103-0.
Pełny tekst źródłaMayslich, Constance, Philippe Alain Grange, Mathieu Castela, Anne Geneviève Marcelin, Vincent Calvez i Nicolas Dupin. "Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation". International Journal of Molecular Sciences 23, nr 9 (3.05.2022): 5065. http://dx.doi.org/10.3390/ijms23095065.
Pełny tekst źródłaZychowska, Magdalena, Ewelina Rojewska, Dominika Pilat i Joanna Mika. "The Role of Some Chemokines from the CXC Subfamily in a Mouse Model of Diabetic Neuropathy". Journal of Diabetes Research 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/750182.
Pełny tekst źródłaRitzman, Anna M., Jennifer M. Hughes-Hanks, Victoria A. Blaho, Laura E. Wax, William J. Mitchell i Charles R. Brown. "The Chemokine Receptor CXCR2 Ligand KC (CXCL1) Mediates Neutrophil Recruitment and Is Critical for Development of Experimental Lyme Arthritis and Carditis". Infection and Immunity 78, nr 11 (7.09.2010): 4593–600. http://dx.doi.org/10.1128/iai.00798-10.
Pełny tekst źródłaUrbantat, Ruth, Anne Blank, Irina Kremenetskaia, Peter Vajkoczy, Güliz Acker i Susan Brandenburg. "The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function". International Journal of Molecular Sciences 22, nr 5 (5.03.2021): 2634. http://dx.doi.org/10.3390/ijms22052634.
Pełny tekst źródłaBian, Jing, Jianyang Fu, Xin Wang, Jihye Lee, Gagandeep Brar, Freddy E. Escorcia, Maggie Cam i Changqing Xie. "Characterization of Immunogenicity of Malignant Cells with Stemness in Intrahepatic Cholangiocarcinoma by Single-Cell RNA Sequencing". Stem Cells International 2022 (29.04.2022): 1–14. http://dx.doi.org/10.1155/2022/3558200.
Pełny tekst źródłaLink, Daniel. "Mechanisms of Neutrophil Release from the Bone Marrow". Blood 122, nr 21 (15.11.2013): SCI—43—SCI—43. http://dx.doi.org/10.1182/blood.v122.21.sci-43.sci-43.
Pełny tekst źródłaKish, Danielle, i Robert Fairchild. "Expression of CCL20 in hapten challenged skin induces recruitment of hapten-primed CD8 T cells producing IL-17 into the skin (CAM1P.229)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 47.5. http://dx.doi.org/10.4049/jimmunol.192.supp.47.5.
Pełny tekst źródłaStock, Angus T., Jeffrey M. Smith i Francis R. Carbone. "Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection". Journal of Experimental Medicine 211, nr 5 (21.04.2014): 751–59. http://dx.doi.org/10.1084/jem.20132183.
Pełny tekst źródłaBoro, Monoranjan, i Kithiganahalli Narayanaswamy Balaji. "CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein–Coupled Receptor CXCR2". Journal of Immunology 199, nr 5 (24.07.2017): 1660–71. http://dx.doi.org/10.4049/jimmunol.1700129.
Pełny tekst źródłaSmith, David F., Elena Galkina, Klaus Ley i Yuqing Huo. "GRO family chemokines are specialized for monocyte arrest from flow". American Journal of Physiology-Heart and Circulatory Physiology 289, nr 5 (listopad 2005): H1976—H1984. http://dx.doi.org/10.1152/ajpheart.00153.2005.
Pełny tekst źródłaFischer, Jeffrey, Jeffrey West, Nnenaya Agochukwu, Colby Suire i Hollie Hale-Donze. "Induction of Host Chemotactic Response by Encephalitozoon spp." Infection and Immunity 75, nr 4 (18.12.2006): 1619–25. http://dx.doi.org/10.1128/iai.01535-06.
Pełny tekst źródła