Artykuły w czasopismach na temat „Curved surfaces”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Curved surfaces.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Curved surfaces”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Libster-Hershko, Ana, Roy Shiloh i Ady Arie. "Surface plasmon polaritons on curved surfaces". Optica 6, nr 1 (18.01.2019): 115. http://dx.doi.org/10.1364/optica.6.000115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ando, Naoya. "Parallel curved surfaces". Tsukuba Journal of Mathematics 28, nr 1 (czerwiec 2004): 223–43. http://dx.doi.org/10.21099/tkbjm/1496164723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ghomi, Mohammad, i Joel Spruck. "Rigidity of Nonnegatively Curved Surfaces Relative to a Curve". International Mathematics Research Notices 2020, nr 17 (17.07.2018): 5387–400. http://dx.doi.org/10.1093/imrn/rny167.

Pełny tekst źródła
Streszczenie:
Abstract We prove that any properly oriented $\mathcal{C}^{2,1}$ isometric immersion of a positively curved Riemannian surface $M$ into Euclidean 3-space is uniquely determined, up to a rigid motion, by its values on any curve segment in $M$. A generalization of this result to nonnegatively curved surfaces is presented as well under suitable conditions on their parabolic points. Thus, we obtain a local version of Cohn-Vossen’s rigidity theorem for convex surfaces subject to a Dirichlet condition. The proof employs in part Hormander’s unique continuation principle for elliptic partial differential equations. Our approach also yields a short proof of Cohn-Vossen’s theorem.
Style APA, Harvard, Vancouver, ISO itp.
4

Vogels, Ingrid M. L. C., Astrid M. L. Kappers i Jan J. Koenderink. "Haptic Aftereffect of Curved Surfaces". Perception 25, nr 1 (styczeń 1996): 109–19. http://dx.doi.org/10.1068/p250109.

Pełny tekst źródła
Streszczenie:
A haptic aftereffect of curved surfaces is demonstrated. Two spherical surfaces were presented sequentially to human subjects. They rested one hand on the first (conditioning) surface. After a fixed conditioning period they transferred their hand to the second (test) surface and judged whether the test surface was convex or concave. In experiment 1 the curvature of the conditioning surface was varied; the subject's judgment of convexity or concavity of the test surface was strongly shifted in the direction opposite to the curvature of the conditioning surface (negative aftereffect). Therefore, subjects judged a flat surface to be concave after being exposed to a convex surface. After a conditioning period of 5 s the shift was about 20% of the curvature of the conditioning surface. In experiment 2 the duration of the conditioning period was varied; the magnitude of the aftereffect could be described by a first-order integrator with a time constant of 2 s. In experiment 3 the time interval between the conditioning period and the touching of the second surface was varied; the magnitude of the aftereffect could be described by an exponential decay with a time constant of 40 s. It is concluded that the haptic aftereffect of curved surfaces is an important effect that occurs almost instantaneously and lasts for an appreciable period.
Style APA, Harvard, Vancouver, ISO itp.
5

Wei, Chenwei, Mengjia Cen, Hsiang-Chen Chui i Tun Cao. "Surface wave direction control on curved surfaces". Journal of Physics D: Applied Physics 54, nr 7 (4.12.2020): 074003. http://dx.doi.org/10.1088/1361-6463/abbbb6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yaman, K., M. Jeng, P. Pincus, C. Jeppesen i C. M. Marques. "Rods near curved surfaces and in curved boxes". Physica A: Statistical Mechanics and its Applications 247, nr 1-4 (grudzień 1997): 159–82. http://dx.doi.org/10.1016/s0378-4371(97)00405-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bieker, T., i S. Dietrich. "Wetting of curved surfaces". Physica A: Statistical Mechanics and its Applications 252, nr 1-2 (kwiecień 1998): 85–137. http://dx.doi.org/10.1016/s0378-4371(97)00618-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Saxena, A., R. Dandoloff i T. Lookman. "Deformable curved magnetic surfaces". Physica A: Statistical Mechanics and its Applications 261, nr 1-2 (grudzień 1998): 13–25. http://dx.doi.org/10.1016/s0378-4371(98)00378-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wang, Ying, i Ya-Pu Zhao. "Electrowetting on curved surfaces". Soft Matter 8, nr 9 (2012): 2599. http://dx.doi.org/10.1039/c2sm06878h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Turner, Ari M., Vincenzo Vitelli i David R. Nelson. "Vortices on curved surfaces". Reviews of Modern Physics 82, nr 2 (30.04.2010): 1301–48. http://dx.doi.org/10.1103/revmodphys.82.1301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Mitchell-Thomas, R. C., O. Quevedo-Teruel, T. M. McManus, S. A. R. Horsley i Y. Hao. "Lenses on curved surfaces". Optics Letters 39, nr 12 (9.06.2014): 3551. http://dx.doi.org/10.1364/ol.39.003551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Vitelli, V., J. B. Lucks i D. R. Nelson. "Crystallography on curved surfaces". Proceedings of the National Academy of Sciences 103, nr 33 (7.08.2006): 12323–28. http://dx.doi.org/10.1073/pnas.0602755103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Mladenov, Iva�lo M. "Quantization on curved surfaces". International Journal of Quantum Chemistry 89, nr 4 (2002): 248–54. http://dx.doi.org/10.1002/qua.10292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Chan, Hsungrow. "Topological uniqueness of negatively curved surfaces". Nagoya Mathematical Journal 199 (wrzesień 2010): 137–49. http://dx.doi.org/10.1017/s002776300002225x.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we consider complete, noncompact, negatively curved surfaces that are twice continuously differentiably embedded in Euclidean three-space, showing that if such surfaces have square integrable second fundamental form, then their topology must, by the index method, be an annulus. We then show how this relates to some minimal surface theorems and has a corollary on minimal surfaces with finite total curvature. In addition, we discuss, by the index method, the relation between the topology and asymptotic curves. Finally, we apply the results yielded to the problem of isometrical immersions into Euclidean three-space of black hole models.
Style APA, Harvard, Vancouver, ISO itp.
15

Chan, Hsungrow. "Topological uniqueness of negatively curved surfaces". Nagoya Mathematical Journal 199 (wrzesień 2010): 137–49. http://dx.doi.org/10.1215/00277630-2010-007.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we consider complete, noncompact, negatively curved surfaces that are twice continuously differentiably embedded in Euclidean three-space, showing that if such surfaces have square integrable second fundamental form, then their topology must, by the index method, be an annulus. We then show how this relates to some minimal surface theorems and has a corollary on minimal surfaces with finite total curvature. In addition, we discuss, by the index method, the relation between the topology and asymptotic curves. Finally, we apply the results yielded to the problem of isometrical immersions into Euclidean three-space of black hole models.
Style APA, Harvard, Vancouver, ISO itp.
16

Miura, Kohichi, Takazo Yamada, Masayuki Takahashi i Hwa Soo Lee. "Application of Superfinishing to Curved Surfaces". Key Engineering Materials 581 (październik 2013): 241–46. http://dx.doi.org/10.4028/www.scientific.net/kem.581.241.

Pełny tekst źródła
Streszczenie:
It is well known that the superfinishing is a high efficient surface finishing method to cylindrical workpieces. In this method, grinding stones are pressed to the outside of cylindrical surfaces. Rotating cylindrical workpieces and making relative vibrations between grinding stones and ground surfaces in the directions of the center lines of workpiece rotations, the cylindrical surfaces are ground and mirror surfaces are realized relatively in short time. Therefore, this finishing method is widely applied to the finishing of precise machine elements. However, this method cannot be applied in case of that the workpiece which is not simple cylindrical geometries so far. In this study, a new application method of superfinishing to the cylindrical workpieces having curved parts is proposed and its performance is discussed experimentally.
Style APA, Harvard, Vancouver, ISO itp.
17

BANAKH, Taras, i Igor BELEGRADEK. "Spaces of nonnegatively curved surfaces". Journal of the Mathematical Society of Japan 70, nr 2 (kwiecień 2018): 733–56. http://dx.doi.org/10.2969/jmsj/07027344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kappers, Astrid M. L., Jan J. Koenderink i Inge Lichtenegger. "Haptic identification of curved surfaces". Perception & Psychophysics 56, nr 1 (styczeń 1994): 53–61. http://dx.doi.org/10.3758/bf03211690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Courtland, Rachel. "Light trapped on curved surfaces". New Scientist 207, nr 2778 (wrzesień 2010): 14. http://dx.doi.org/10.1016/s0262-4079(10)62250-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Jaggard, D. L., i J. C. Liu. "Chiral Layers on Curved Surfaces". Journal of Electromagnetic Waves and Applications 6, nr 5 (1.01.1992): 669–94. http://dx.doi.org/10.1163/156939392x00913.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Jaggard, D. L., i J. C. Liu. "Chiral Layers on Curved Surfaces". Journal of Electromagnetic Waves and Applications 6, nr 5-6 (1.01.1992): 669–94. http://dx.doi.org/10.1163/156939392x01381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Wijmans, C. M., i E. B. Zhulina. "Polymer brushes at curved surfaces". Macromolecules 26, nr 26 (grudzień 1993): 7214–24. http://dx.doi.org/10.1021/ma00078a016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Loureiro, J. B. R., i A. P. Silva Freire. "Flow over riblet curved surfaces". Journal of Physics: Conference Series 318, nr 2 (22.12.2011): 022035. http://dx.doi.org/10.1088/1742-6596/318/2/022035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Sahoo, P., A. Mitra i K. Saha. "Adhesive contact of curved surfaces". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 224, nr 5 (17.03.2010): 439–51. http://dx.doi.org/10.1243/13506501jet684.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wilson, Lynn O., i R. B. Marcus. "Oxidation of Curved Silicon Surfaces". Journal of The Electrochemical Society 134, nr 2 (1.02.1987): 481–90. http://dx.doi.org/10.1149/1.2100485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Hołyst, R., D. Plewczyński, A. Aksimentiev i K. Burdzy. "Diffusion on curved, periodic surfaces". Physical Review E 60, nr 1 (1.07.1999): 302–7. http://dx.doi.org/10.1103/physreve.60.302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Negara, Christian, Thomas Längle i Jürgen Beyerer. "Imaging ellipsometry for curved surfaces". Journal of Vacuum Science & Technology B 38, nr 1 (styczeń 2020): 014016. http://dx.doi.org/10.1116/1.5129654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sato, Jun, i Roberto Cipolla. "Uncalibrated reconstruction of curved surfaces". Image and Vision Computing 17, nr 8 (czerwiec 1999): 617–23. http://dx.doi.org/10.1016/s0262-8856(98)00182-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Levine, D., J. E. Avron i A. Brokman. "Grain Growth on Curved Surfaces". Materials Science Forum 94-96 (styczeń 1992): 281–84. http://dx.doi.org/10.4028/www.scientific.net/msf.94-96.281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Chan, Hsungrow, i Andrejs Treibergs. "Nonpositively Curved Surfaces in R3". Journal of Differential Geometry 57, nr 3 (marzec 2001): 389–407. http://dx.doi.org/10.4310/jdg/1090348127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kilian, Martin, Aron Monszpart i Niloy J. Mitra. "String Actuated Curved Folded Surfaces". ACM Transactions on Graphics 36, nr 3 (6.07.2017): 1–13. http://dx.doi.org/10.1145/3015460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zhulina, E. B., i O. V. Borisov. "Polyelectrolytes Grafted to Curved Surfaces". Macromolecules 29, nr 7 (styczeń 1996): 2618–26. http://dx.doi.org/10.1021/ma9515801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Tessendorf, J. "Radiative transfer on curved surfaces". Journal of Mathematical Physics 31, nr 4 (kwiecień 1990): 1010–19. http://dx.doi.org/10.1063/1.528806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Roth, R., B. Götzelmann i S. Dietrich. "Depletion Forces near Curved Surfaces". Physical Review Letters 83, nr 2 (12.07.1999): 448–51. http://dx.doi.org/10.1103/physrevlett.83.448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Cannon, A. H., i W. P. King. "Hydrophobicity of curved microstructured surfaces". Journal of Micromechanics and Microengineering 20, nr 2 (18.01.2010): 025018. http://dx.doi.org/10.1088/0960-1317/20/2/025018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Philips, B., E. A. Parker i R. J. Langley. "Finite curved frequency selective surfaces". Electronics Letters 29, nr 10 (13.05.1993): 882–83. http://dx.doi.org/10.1049/el:19930589.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Kilian, Martin, Aron Monszpart i Niloy J. Mitra. "String Actuated Curved Folded Surfaces". ACM Transactions on Graphics 36, nr 4 (20.07.2017): 1. http://dx.doi.org/10.1145/3072959.3015460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kilian, Martin, Aron Monszpart i Niloy J. Mitra. "String actuated curved folded surfaces". ACM Transactions on Graphics 36, nr 4 (20.07.2017): 1. http://dx.doi.org/10.1145/3072959.3126802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Weng, J. F. "Steiner Trees on Curved Surfaces". Graphs and Combinatorics 17, nr 2 (czerwiec 2001): 353–63. http://dx.doi.org/10.1007/pl00007249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Neogi, P., i Stig E. Friberg. "Curved surfaces in surfactant aggregates". Journal of Colloid and Interface Science 127, nr 2 (luty 1989): 492–96. http://dx.doi.org/10.1016/0021-9797(89)90053-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Burstall, F., U. Hertrich-Jeromin, F. Pedit i U. Pinkall. "Curved flats and isothermic surfaces". Mathematische Zeitschrift 225, nr 2 (czerwiec 1997): 199–209. http://dx.doi.org/10.1007/pl00004308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Rank, M., i A. Voigt. "Active flows on curved surfaces". Physics of Fluids 33, nr 7 (lipiec 2021): 072110. http://dx.doi.org/10.1063/5.0056099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ozmaian, Aye, Rob D. Coalson i Masoumeh Ozmaian. "Adsorption of Polymer-Grafted Nanoparticles on Curved Surfaces". Chemistry 3, nr 1 (8.03.2021): 382–90. http://dx.doi.org/10.3390/chemistry3010028.

Pełny tekst źródła
Streszczenie:
Nanometer-curved surfaces are abundant in biological systems as well as in nano-sized technologies. Properly functionalized polymer-grafted nanoparticles (PGNs) adhere to surfaces with different geometries and curvatures. This work explores some of the energetic and mechanical characteristics of the adhesion of PGNs to surfaces with positive, negative and zero curvatures using Coarse-Grained Molecular Dynamics (CGMD) simulations. Our calculated free energies of binding of the PGN to the curved and flat surfaces as a function of separation distance show that curvature of the surface critically impacts the adhesion strength. We find that the flat surface is the most adhesive, and the concave surface is the least adhesive surface. This somewhat counterintuitive finding suggests that while a bare nanoparticle is more likely to adhere to a positively curved surface than a flat surface, grafting polymer chains to the nanoparticle surface inverts this behavior. Moreover, we studied the rheological behavior of PGN upon separation from the flat and curved surfaces under external pulling force. The results presented herein can be exploited in drug delivery and self-assembly applications.
Style APA, Harvard, Vancouver, ISO itp.
44

Oksengendler, B. L., i N. N. Turaeva. "Surface tamm states at curved surfaces of ionic crystals". Doklady Physics 55, nr 10 (październik 2010): 477–79. http://dx.doi.org/10.1134/s1028335810100010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Liu, Zhen-yu, Shi-en Zhou, Jin Cheng, Chan Qiu i Jian-rong Tan. "Assembly variation analysis of flexible curved surfaces based on Bézier curves". Frontiers of Information Technology & Electronic Engineering 19, nr 6 (czerwiec 2018): 796–808. http://dx.doi.org/10.1631/fitee.1601619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Yu, Xi Fa, Ci Xiang Li i Jing Lin. "Curved Surface and Material Design and Construction". Applied Mechanics and Materials 99-100 (wrzesień 2011): 162–65. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.162.

Pełny tekst źródła
Streszczenie:
Abstract: The application of curved surface is more and more popular in various kinds of engineering, for different curved surfaces ,because the form and formation way of their generatrix form are different, the surface properties are also different[1,2],so the relevant materials used must match with them too. As a designer, when he/she designs the curved surface, while in pursuit of the perfect modeling, he/she must take the scientific structure in consideration as well, so as to convenient for construction; As a constructor, he/she must fully understand the curved surface’s character, rasp the mechanism, and then use a scientific and simple technique to achieve a perfect structure modeling.
Style APA, Harvard, Vancouver, ISO itp.
47

Drbúl, Mário, Pavol Martikáň, Jozef Bronček, Ivan Litvaj i Jaroslava Svobodová. "Analysis of roughness profile on curved surfaces". MATEC Web of Conferences 244 (2018): 01024. http://dx.doi.org/10.1051/matecconf/201824401024.

Pełny tekst źródła
Streszczenie:
Production and control of accurate surface bring some issues. There are some technological limits of machining, but we have to know how to control these machined surfaces due to functional and life-time properties, which are affected mainly by roughness surface. Most important part of system of roughness surface measuring is suppression of nominal shape of scanned profile, its filtration according to standard ISO 4288 and evaluation according to the relevant standards. This article described process of filtration of roughness surface profile. If operator of the measuring instrument omits some important aspects at this stage, we obtain incorrect roughness surface profile, which significantly distorts the results of measurement leading to a rough error. The article is aimed at verifying roughness meters and indicates if a certain amount of data would be lost as if this loss affected the measurement result. Objectively, such a loss of data was simulated in the evaluation by considering every 7th scanned point at constant velocity of measurement.
Style APA, Harvard, Vancouver, ISO itp.
48

YAMAGATA, Satoshi, Hideki AOYAMA i Noriaki SANO. "0306 High Efficiency Machining of Curved Surfaces Using 5 Axis Machine Tool". Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _0306–1_—_0306–6_. http://dx.doi.org/10.1299/jsmelem.2015.8._0306-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ye, De Bin, Jian Ming Zhan i Gang Ming Wang. "Movement Control of Small Moving Robots for Large Curved Surfaces Polishing". Advanced Materials Research 211-212 (luty 2011): 731–35. http://dx.doi.org/10.4028/www.scientific.net/amr.211-212.731.

Pełny tekst źródła
Streszczenie:
A small polishing robot must be made to adapt the change of curvature and slope of the cutting curved surfaces when it moves on the large curved surface. This paper develops a small moving robot to move on the large curved surface and polish it which can adapt the change of curvature and slope of the cutting curved surfaces. It also establishes the kinematics model and the inverse kinematics for movement control of the robot. By analyzing the motion characteristics and the processing of automatic polishing, the paper develops the posture equation of the robot. Experiments shows the small moving robot is capable of adaptability in polishing curved surfaces.
Style APA, Harvard, Vancouver, ISO itp.
50

P. Paternain, Gabriel. "Transparent connections over negatively curved surfaces". Journal of Modern Dynamics 3, nr 2 (2009): 311–33. http://dx.doi.org/10.3934/jmd.2009.3.311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii