Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: CuGaS2.

Artykuły w czasopismach na temat „CuGaS2”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CuGaS2”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Son, Namgyu, Jun Heo, Young-Sang Youn, Youngsoo Kim, Jeong Do i Misook Kang. "Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts". Catalysts 9, nr 1 (4.01.2019): 41. http://dx.doi.org/10.3390/catal9010041.

Pełny tekst źródła
Streszczenie:
CuS and CuGaS2 heterojunction catalysts were used to improve hydrogen production performance by photo splitting of methanol aqueous solution in the visible region in this study. CuGaS2, which is a chalcogenide structure, can form structural defects to promote separation of electrons and holes and improve visible light absorbing ability. The optimum catalytic activity of CuGaS2 was investigated by varying the heterojunction ratio of CuGaS2 with CuS. Physicochemical properties of CuS, CuGaS2 and CuS@CuGaS2 nanoparticles were confirmed by X-ray diffraction, ultraviolet visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Compared with pure CuS, the hydrogen production performance of CuGaS2 doped with Ga dopant was improved by methanol photolysis, and the photoactivity of the heterogeneous CuS@CuGaS2 catalyst was increased remarkably. Moreover, the 0.5CuS@1.5CuGaS2 catalyst produced 3250 μmol of hydrogen through photolysis of aqueous methanol solution under 10 h UV light irradiation. According to the intensity modulated photovoltage spectroscopy (IMVS) results, the high photoactivity of the CuS@CuGaS2 catalyst is attributed to the inhibition of recombination between electron-hole pairs, accelerating electron-transfer by acting as a trap site at the interface between CuGaS2 structural defects and the heterojunction.
Style APA, Harvard, Vancouver, ISO itp.
2

Miyake, Hideto, Moriki Hata i Koichi Sugiyama. "Solution growth of CuGaS2 and CuGaSe2 using CuI solvent". Journal of Crystal Growth 130, nr 3-4 (czerwiec 1993): 383–88. http://dx.doi.org/10.1016/0022-0248(93)90523-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ullah, Shafi, Miguel Mollar i Bernabé Marí. "Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications". Journal of Solid State Electrochemistry 20, nr 8 (14.05.2016): 2251–57. http://dx.doi.org/10.1007/s10008-016-3237-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Qin, Ming Sheng, Fu Qiang Huang i Ping Chen. "Wide Spectrum Absorption of CuGaS2 with Intermediate Bands". Applied Mechanics and Materials 148-149 (grudzień 2011): 1558–61. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1558.

Pełny tekst źródła
Streszczenie:
The intermediate bands materials CuGa1-xQxS2 (Q = Ge, Sn) were investigated, and the narrow half-filled intermediate bands were successfully introduced into the chalcopyrite CuGaS2 when Ga3+ ion were partially replaced by Ge4+(Sn4+) impurities. The absorption edge of CuGa1-xQxS2 red shifts greatly with the increasing in the doping content due to the form of Ge-4s (Sn-5s) and S-3p hybridization orbits intermediate band, even small Q-doping content(2mol %), considerable red shifts are still achieved. CuGa1-xQxS2 (Q = Ge, Sn) with IBs extend the range of solar spectrum and could be the excellent candidates for the theoretical predictions of enhanced solar cell efficiency.
Style APA, Harvard, Vancouver, ISO itp.
5

Massé, George. "Luminescence of CuGaS2". Journal of Applied Physics 58, nr 2 (15.07.1985): 930–35. http://dx.doi.org/10.1063/1.336168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Berestok, Taisiia, Pablo Guardia, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot i Stephanie Brock. "CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals". Nanomaterials 8, nr 4 (5.04.2018): 220. http://dx.doi.org/10.3390/nano8040220.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jahangirova, S. K., Sh H. Mammadov, G. R. Gurbanov i O. M. Aliyev. "INTERACTION IN THE SYSTEM CuGaS2–PbGa2S4". Azerbaijan Chemical Journal, nr 1 (19.03.2019): 46–49. http://dx.doi.org/10.32737/0005-2531-2019-1-46-49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Grechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik i Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications". Energies 16, nr 12 (20.06.2023): 4823. http://dx.doi.org/10.3390/en16124823.

Pełny tekst źródła
Streszczenie:
Chalcopyrites are ternary semiconductor compounds with successful applications in photovoltaics. Certain chalcopyrites are well researched, yet others remain understudied despite showing promise. In this study, we use ab initio methods to study CuGaS2, AgGaS2, and CuGaSe2 chalcopyrites with a focus on their less studied solid solutions. We use density functional theory (DFT) to study the effects that atomic configurations have on the properties of a solid solution and we calculate the optical absorption spectra using a many-body perturbation theory. Our theoretical simulations predict that excess of In and Se in the solid solutions leads to narrowing of the band gap and to the broadening of the absorption spectra. Obtained results show promise for possible photovoltaic applications, as well as developed methodology can be used for further study of other promising chalcopyritic compounds.
Style APA, Harvard, Vancouver, ISO itp.
9

Syrbu, N. N., L. L. Nemerenco, V. N. Bejan i V. E. Tezlevan. "Bound exciton in CuGaS2". Optics Communications 280, nr 2 (grudzień 2007): 387–92. http://dx.doi.org/10.1016/j.optcom.2007.08.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Shirakata, Sho, Kazuo Murakami i Shigehiro Isomura. "Electroreflectance Studies in CuGaS2". Japanese Journal of Applied Physics 28, Part 1, No. 9 (20.09.1989): 1728–29. http://dx.doi.org/10.1143/jjap.28.1728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bodnar, I. V., G. F. Smirnova, A. G. Karoza i A. P. Chernyakova. "Vibrational Spectra of CuGaS2 and CuGaSe2 Compounds and CuGaS2xSe2(1−x) Solid Solutions2)". physica status solidi (b) 158, nr 2 (1.04.1990): 469–74. http://dx.doi.org/10.1002/pssb.2221580207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hase, Shunnosuke, Yoshiki Iso i Tetsuhiko Isobe. "Bandgap-tuned fluorescent CuGaS2/ZnS core/shell quantum dots for photovoltaic applications". Journal of Materials Chemistry C 10, nr 9 (2022): 3523–30. http://dx.doi.org/10.1039/d1tc05358b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Massé, G. "Time resolved spectra in CuGaS2". physica status solidi (a) 87, nr 2 (16.02.1985): K171—K173. http://dx.doi.org/10.1002/pssa.2210870254.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kobayashi, Satoshi, Futao Kaneko, Takeo Maruyama, Nozomu Tsuboi i Hitoshi Tamura. "ZnyCd1-yS-CuGaS2 heterojunction diode". Electronics and Communications in Japan (Part II: Electronics) 74, nr 10 (1991): 73–81. http://dx.doi.org/10.1002/ecjb.4420741008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Keating, Logan, i Moonsub Shim. "Mechanism of morphology variations in colloidal CuGaS2 nanorods". Nanoscale Advances 3, nr 18 (2021): 5322–31. http://dx.doi.org/10.1039/d1na00434d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Elalfy, Loay, Denis Music i Ming Hu. "First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites". Materials 12, nr 21 (25.10.2019): 3491. http://dx.doi.org/10.3390/ma12213491.

Pełny tekst źródła
Streszczenie:
The effect of compression on the thermal conductivity of CuGaS2, CuInS2, CuInTe2, and AgInTe2 chalcopyrites (space group I-42d) was studied at 300 K using phonon Boltzmann transport equation (BTE) calculations. The thermal conductivity was evaluated by solving the BTE with harmonic and third-order interatomic force constants. The thermal conductivity of CuGaS2 increases with pressure, which is a common behavior. Striking differences occur for the other three compounds. CuInTe2 and AgInTe2 exhibit a drop in the thermal conductivity upon increasing pressure, which is anomalous. AgInTe2 reaches a very low thermal conductivity of 0.2 W·m−1·K−1 at 2.6 GPa, being beneficial for many energy devices, such as thermoelectrics. CuInS2 is an intermediate case. Based on the phonon dispersion data, the phonon frequencies of the acoustic modes for CuInTe2 and AgInTe2 decrease with increasing pressure, thereby driving the anomaly, while there is no significant pressure effect for CuGaS2. This leads to the negative Grüneisen parameter for CuInTe2 and AgInTe2, a decreased phonon relaxation time, and a decreased thermal conductivity. This softening of the acoustic modes upon compression is suggested to be due to a rotational motion of the chalcopyrite building blocks rather than a compressive oscillation. The negative Grüneisen parameters and the anomalous phonon behavior yield a negative thermal expansion coefficient at lower temperatures, based on the Grüneisen vibrational theory.
Style APA, Harvard, Vancouver, ISO itp.
17

Nuriyev, Mubariz. "Electron Diffraction Study of CuGaS2 Film". Physical Science International Journal 5, nr 3 (10.01.2015): 165–71. http://dx.doi.org/10.9734/psij/2015/12881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Botha, J. R., M. S. Branch, A. W. R. Leitch i J. Weber. "Radiative defects in CuGaS2 thin films". Physica B: Condensed Matter 340-342 (grudzień 2003): 923–27. http://dx.doi.org/10.1016/j.physb.2003.09.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Syrbu, N. N., L. L. Nemerenco i V. E. Tezlevan. "Resonance impurity radiation in CuGaS2 crystals". Optical Materials 30, nr 3 (listopad 2007): 451–56. http://dx.doi.org/10.1016/j.optmat.2006.12.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

MARUSHKO, L. P., Y. E. ROMANYUK, L. V. PISKACH PISKACH, O. V. PARASYUK, I. D. OLEKSEYUK, S. V. VOLKOV i V. I. PEKHNYO. "The reciprocal system CuGaS2+CuInSe2DCuGaSe2+CuInS2". Chemistry of Metals and Alloys 3, nr 1/2 (2010): 18–23. http://dx.doi.org/10.30970/cma3.0112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Marushko, L. P., L. V. Piskach, Y. E. Romanyuk, O. V. Parasyuk, I. D. Olekseyuk, S. V. Volkov i V. I. Pekhnyo. "Quasi-ternary system CuGaS2–CuInS2–2CdS". Journal of Alloys and Compounds 492, nr 1-2 (marzec 2010): 184–89. http://dx.doi.org/10.1016/j.jallcom.2009.11.171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kim, Myeongok, Nazmul Ahsan, Zacharie Jehl, Yudania Sánchez i Yoshitaka Okada. "Properties of sputter-grown CuGaS2 absorber and CuGaS2/Cd1-xZnxS buffer heterointerface for solar cell application". Thin Solid Films 743 (luty 2022): 139063. http://dx.doi.org/10.1016/j.tsf.2021.139063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Han, M. M., X. L. Zhang i Z. Zeng. "Sn doping induced intermediate band in CuGaS2". RSC Advances 6, nr 112 (2016): 110511–16. http://dx.doi.org/10.1039/c6ra16855h.

Pełny tekst źródła
Streszczenie:
As an intermediate band material, the dynamical and phase stability and optoelectronic properties of Sn doped CuGaS2 are systematically investigated, and suggest that CuGaS2 that is moderately doped with Sn can be a potential candidate for photovoltaic applications.
Style APA, Harvard, Vancouver, ISO itp.
24

Shirakata, Sho, i Shigehiro Isomura. "Yb-Related Photoluminescence in CuGaS2, AgGaSe2and AgGaS2". Japanese Journal of Applied Physics 37, Part 1, No. 3A (15.03.1998): 776–80. http://dx.doi.org/10.1143/jjap.37.776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Metzner, H., Th Hahn, J. Cieslak, U. Grossner, U. Reislöhner, W. Witthuhn, R. Goldhahn, J. Eberhardt, G. Gobsch i J. Kräußlich. "Epitaxial growth of CuGaS2 on Si(111)". Applied Physics Letters 81, nr 1 (lipiec 2002): 156–58. http://dx.doi.org/10.1063/1.1492003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Abdullaev, N. A., Kh V. Aliguliyeva, L. N. Aliyeva, I. Qasimoglu i T. G. Kerimova. "Low-temperature conductivity in CuGaS2 single crystals". Semiconductors 49, nr 4 (kwiecień 2015): 428–31. http://dx.doi.org/10.1134/s1063782615040028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Choi, In-Hwan, Sung-Hwan Eom i Peter Y. Yu. "Dispersion of birefringence in AgGaS2 and CuGaS2". Journal of Applied Physics 82, nr 6 (15.09.1997): 3100–3104. http://dx.doi.org/10.1063/1.366150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Botha, J. R., M. S. Branch, A. G. Chowles, A. W. R. Leitch i J. Weber. "Photoluminescence of vacuum-deposited CuGaS2 thin films". Physica B: Condensed Matter 308-310 (grudzień 2001): 1065–68. http://dx.doi.org/10.1016/s0921-4526(01)00848-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Cieslak, J., H. Metzner, Th Hahn, U. Reislöhner, U. Kaiser, J. Kräußlich i W. Witthuhn. "Microstructure of epitaxial CuGaS2 on Si(111)". Journal of Physics and Chemistry of Solids 64, nr 9-10 (wrzesień 2003): 1777–80. http://dx.doi.org/10.1016/s0022-3697(03)00197-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Branch, M. S., P. R. Berndt, J. R. Botha, A. W. R. Leitch i J. Weber. "Structure and morphology of CuGaS2 thin films". Thin Solid Films 431-432 (maj 2003): 94–98. http://dx.doi.org/10.1016/s0040-6090(03)00208-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Julien, C., i S. Barnier. "Properties of several varieties of CuGaS2 microcrystals". Materials Science and Engineering: B 86, nr 2 (wrzesień 2001): 152–56. http://dx.doi.org/10.1016/s0921-5107(01)00678-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Tanaka, K., H. Uchiki, S. Iida, T. Terasako i S. Shirakata. "Biexciton luminescence from CuGaS2 bulk single crystals". Solid State Communications 114, nr 4 (marzec 2000): 197–201. http://dx.doi.org/10.1016/s0038-1098(00)00035-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Sainctavit, Ph, J. Petiau, A. M. Flank, J. Ringeissen i S. Lewonczuk. "XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2". Physica B: Condensed Matter 158, nr 1-3 (czerwiec 1989): 623–24. http://dx.doi.org/10.1016/0921-4526(89)90413-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sudarsan, V., i S. K. Kulshreshtha. "Low temperature synthesis of the semiconductor CuGaS2". Materials Chemistry and Physics 49, nr 2 (czerwiec 1997): 146–49. http://dx.doi.org/10.1016/s0254-0584(97)01875-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Castellanos Águila, J. E., P. Palacios, J. C. Conesa, J. Arriaga i P. Wahnón. "Electronic band alignment at CuGaS2 chalcopyrite interfaces". Computational Materials Science 121 (sierpień 2016): 79–85. http://dx.doi.org/10.1016/j.commatsci.2016.04.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Tinoco, T., J. P. Itié, A. Polian, A. San Miguel, E. Moya, P. Grima, J. Gonzalez i F. Gonzalez. "Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure". Le Journal de Physique IV 04, nr C9 (listopad 1994): C9–151—C9–154. http://dx.doi.org/10.1051/jp4:1994923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Susaki, Masami, Kazuki Wakita i Nobuyuki Yamamoto. "Luminescence of Mixed-Mode Exciton-Polariton in CuGaS2". Japanese Journal of Applied Physics 38, Part 1, No. 5A (15.05.1999): 2787–91. http://dx.doi.org/10.1143/jjap.38.2787.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Miyake, Hideto, i Koichi Sugiyama. "Phase Diagram of the CuGaS2-In Pseudobinary System". Japanese Journal of Applied Physics 29, Part 2, No. 6 (20.06.1990): L998—L1000. http://dx.doi.org/10.1143/jjap.29.l998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Syrbu, N. N., M. Blazhe, I. M. Tiginyanu i V. E. Tezlevan. "Resonance Raman scattering by excitonic polaritons in CuGaS2". Optics and Spectroscopy 92, nr 3 (marzec 2002): 395–401. http://dx.doi.org/10.1134/1.1465466.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Syrbu, N. N., M. Blaje, V. E. Tezlevan i V. V. Ursaki. "Spatial dispersion in polariton spectra of CuGaS2 crystals". Optics and Spectroscopy 92, nr 3 (marzec 2002): 402–8. http://dx.doi.org/10.1134/1.1465467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Liu, Zhongping, Qiaoyan Hao, Rui Tang, Linlin Wang i Kaibin Tang. "Facile one-pot synthesis of polytypic CuGaS2 nanoplates". Nanoscale Research Letters 8, nr 1 (2013): 524. http://dx.doi.org/10.1186/1556-276x-8-524.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hu, J. Q., B. Deng, C. R. Wang, K. B. Tang i Y. T. Qian. "Hydrothermal preparation of CuGaS2 crystallites with different morphologies". Solid State Communications 121, nr 9-10 (marzec 2002): 493–96. http://dx.doi.org/10.1016/s0038-1098(01)00516-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Oh, Nuri, Logan P. Keating, Gryphon A. Drake i Moonsub Shim. "CuGaS2–CuInE2 (E = S, Se) Colloidal Nanorod Heterostructures". Chemistry of Materials 31, nr 6 (27.02.2019): 1973–80. http://dx.doi.org/10.1021/acs.chemmater.8b04769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Susaki, Masami, Hiromichi Horinaka i Nobuyuki Yamamoto. "Photoconductivity Decay Characteristics of Undoped p-Type CuGaS2". Japanese Journal of Applied Physics 31, Part 1, No. 2A (15.02.1992): 301–4. http://dx.doi.org/10.1143/jjap.31.301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Otoma, Hiromi, Tohru Honda, Kazuhiko Hara, Junji Yoshino i Hiroshi Kukimoto. "Growth of CuGaS2 by alternating-source-feeding MOVPE". Journal of Crystal Growth 115, nr 1-4 (grudzień 1991): 807–10. http://dx.doi.org/10.1016/0022-0248(91)90850-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Caudillo-Flores, Uriel, Anna Kubacka, Taisiia Berestok, Ting Zhang, Jordi Llorca, Jordi Arbiol, Andreu Cabot i Marcos Fernández-García. "Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites". International Journal of Hydrogen Energy 45, nr 3 (styczeń 2020): 1510–20. http://dx.doi.org/10.1016/j.ijhydene.2019.11.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zalewski, W., R. Bacewicz, J. Antonowicz, S. Schorr, C. Streeck i B. Korzun. "Local structure of Mn dopants in CuAlS2and CuGaS2". physica status solidi (a) 205, nr 10 (październik 2008): 2428–36. http://dx.doi.org/10.1002/pssa.200723587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Han, Miaomiao, Xiaoli Zhang i Z. Zeng. "The investigation of transition metal doped CuGaS2 for promising intermediate band materials". RSC Adv. 4, nr 107 (2014): 62380–86. http://dx.doi.org/10.1039/c4ra10007g.

Pełny tekst źródła
Streszczenie:
Metal (Fe, Co and Ni) doped CuGaS2 systems are systematically investigated by using a screened-exchange hybrid density functional theory, which shows that Fe and Ni doped CuGaS2 systems are potential candidates for the photovoltaic area.
Style APA, Harvard, Vancouver, ISO itp.
49

Wei, Yaowei, Daming Zhuang, Ming Zhao, Ning Zhang, Xinping Yu, Xinchen Li, Xunyan Lyu, Chen Wang i Lan Hu. "Fabrication of in-situ Ti-doped CuGaS2 thin films for intermediate band solar cell applications by sputtering with CuGaS2:Ti targets". Vacuum 169 (listopad 2019): 108921. http://dx.doi.org/10.1016/j.vacuum.2019.108921.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zheng, Wen-Chen, Hui-Ning Dong, Sheng Tang i Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors". Zeitschrift für Naturforschung A 59, nr 1-2 (1.02.2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.

Pełny tekst źródła
Streszczenie:
The EPR zero-field splitting D for Fe3+ ions in some Ib-IIIb-VI2 semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ (Fe3+) for Fe3+ in CuGaS2 and AgGaS2 crystals, are consistent with the observed values, whereas for Fe3+ in CuAlS2 crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe3+ in CuAlS2 are suggested.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii