Gotowa bibliografia na temat „CuFeS2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CuFeS2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CuFeS2"
Auernik, Kathryne S., i Robert M. Kelly. "Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula". Applied and Environmental Microbiology 76, nr 8 (26.02.2010): 2668–72. http://dx.doi.org/10.1128/aem.02016-09.
Pełny tekst źródłaChang, Shun-An, Po-Yu Wen, Tsunghsueh Wu i Yang-Wei Lin. "Microwave-Assisted Synthesis of Chalcopyrite/Silver Phosphate Composites with Enhanced Degradation of Rhodamine B under Photo-Fenton Process". Nanomaterials 10, nr 11 (20.11.2020): 2300. http://dx.doi.org/10.3390/nano10112300.
Pełny tekst źródłaWen, Po-Yu, Ting-Yu Lai, Tsunghsueh Wu i Yang-Wei Lin. "Hydrothermal and Co-Precipitated Synthesis of Chalcopyrite for Fenton-like Degradation toward Rhodamine B". Catalysts 12, nr 2 (26.01.2022): 152. http://dx.doi.org/10.3390/catal12020152.
Pełny tekst źródłaYu, Huajian, Jianhua Xu, Yanyan Hu, Huadi Zhang, Cong Zhang, Chengcheng Qiu, Xuping Wang, Bing Liu, Lei Wei i Jing Li. "Synthesis and characterization of CuFeS2 and Se doped CuFeS2−xSex nanoparticles". Journal of Materials Science: Materials in Electronics 30, nr 13 (27.05.2019): 12269–74. http://dx.doi.org/10.1007/s10854-019-01586-5.
Pełny tekst źródłaHu, Junqing, Qingyi Lu, Kaibin Tang, Yitai Qian, Guien Zhou i Xianming Liu. "A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder". Journal of Materials Research 14, nr 10 (październik 1999): 3870–72. http://dx.doi.org/10.1557/jmr.1999.0523.
Pełny tekst źródłaMikhailovskii, A. P., A. M. Polubotko, V. D. Prochukhan i Yu V. Rud. "Gapless State in CuFeS2". physica status solidi (b) 158, nr 1 (1.03.1990): 229–38. http://dx.doi.org/10.1002/pssb.2221580122.
Pełny tekst źródłaLiu, Zezhong, Zengxu Liu, Zhen Zhao, Danxia Li, Pengfei Zhang, Yanfang Zhang, Xiangyong Liu, Xiaoteng Ding i Yuanhong Xu. "Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria". Nanomaterials 12, nr 14 (19.07.2022): 2469. http://dx.doi.org/10.3390/nano12142469.
Pełny tekst źródłaKorzun, Barys, i Anatoly Pushkarev. "XRPD and Scanning Electron Microscopy of Alloys of the CuAlS2 – CuFeS2 System Prepared by Thermobaric Treatment". MRS Advances 3, nr 56 (2018): 3323–28. http://dx.doi.org/10.1557/adv.2018.558.
Pełny tekst źródłaSugathan, Anumol, Biswajit Bhattacharyya, V. V. R. Kishore, Abhinav Kumar, Guru Pratheep Rajasekar, D. D. Sarma i Anshu Pandey. "Why Does CuFeS2 Resemble Gold?" Journal of Physical Chemistry Letters 9, nr 4 (30.01.2018): 696–701. http://dx.doi.org/10.1021/acs.jpclett.7b03190.
Pełny tekst źródłaKorzun, B. V., A. A. Fadzeyeva, G. Kloess i K. Bente. "Microstructure of CuFeS2-δ-CuInS2alloys". physica status solidi (c) 6, nr 5 (maj 2009): 1055–58. http://dx.doi.org/10.1002/pssc.200881160.
Pełny tekst źródłaRozprawy doktorskie na temat "CuFeS2"
Godfrey, Daniel. "Synthesis, analysis and characterisation of CuFeS2(s) towards superior, green Cu(aq) leaching". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/55165.
Pełny tekst źródłaHouse, Charles Iain. "The electrogeneration of Cr(II) and V(II) solutions and the hydrometallurgical reduction of SnO2, PbS and CuFeS2". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38039.
Pełny tekst źródłaOliveira, Lucas Agostinho de. "Fotoeletrodos de CuFeO2 : eletrossíntese e caracterização". Universidade Estadual de Londrina. Centro de Ciências Exatas. Programa de Pós-Graduação em Química, 2014. http://www.bibliotecadigital.uel.br/document/?code=vtls000190556.
Pełny tekst źródłaDue to environmental concerns in recent decades new sustainable energy sources are being increasingly taken into consideration for use in today's society. Accordingly, the hydrogen produced from solar radiation can be considered an alternative energy. There is great interest in the synthesis and identification at low cost/benefit of p-type semiconductor oxides-based assets in the visible range. In this context, the synthesis of thin films CuFeO2 was performed by potentiostatic electroprecipitation and pulsed electroprecipitation route nitrate reduction and CuFeO2 in the form of nanostructured powders by combustion synthesis in solution method (CSS ) using as fuel separately citric acid, alanine, glycine and urea in the presence and absence of the surfactant Tween 80®, and their physical and photocatalytic characterization. The pulsed and potentiostatic electroprecipitation showed to be effective for the electrochemical synthesis of thin films of CuFeO2 route nitrate reduction. The most suitable potential for electroprecipitation of Cu and Fe were -0.1 V and -0.9 V, respectively , and the best Cu/Fe mole ratio in the precursor solution was 1:1. The film obtained by pulsed electroprecipitation found to be more crystalline and homogeneous film obtained by the fixed potential, however, the films exhibited phases CuFeO2, CuFe2O4 and CuO. The films showed direct transition between BV and BC, with the corresponding Ebg to CuFeO2 1.70 eV and 1.52 eV for the films obtained by fixed and pulsed potential, respectively. The film obtained by pulsed electroprecipitation had photocurrent (36 μA ) 4 times higher than the obtained fixed potential film (9 μA ) . The electrochemical potential of BV and BC are 0,41 and -1,29 for the film electrodeposited at a fixed potential, respectively, and 0,41 and -1,16 for the pulsed potential electrodeposited film. The samples obtained by CSS presented in their compositions CuFeO2, CuFe2O4, CuO and Fe2O3. Both samples synthesized by CSS with a fuel/metal molar ratio of the of 1:1 and 2:1 ratios and the sample obtained by solid state synthesis calcined at 600 ° C showed almost the same photocatalytic activity while the sample synthesized by CSS with fuel/metal molar ratio of 1:1 calcined at 1000 ° C showed photocatalytic activity about 50 % higher than the other. The presence of Tween 80® increased the photocatalytic activity of the samples without surfactant, a trend also shown by XRD patterns . The sample obtained by alanine in the presence of surfactant showed the highest photocatalytic activity, whereas the sample synthesized only with alanine had the lowest photocatalytic activity among all fuels.
Forslund, Axel. "Synthesis and characterisation of delafossite CuFeO2 for solar energy applications". Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297710.
Pełny tekst źródłaHermans, Yannick. "Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting". Phd thesis, Bordeaux, 2019. http://tuprints.ulb.tu-darmstadt.de/8700/1/Complete_thesis%20-%20German.pdf.
Pełny tekst źródłaSono, Sandisiwe. "Comparing estimates of zooplankton abundance from CUFES samples with those from a vertical bongo net". Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/6456.
Pełny tekst źródłaThe accuracy of using CUFES (continuous underway fish egg sampler) as an alternative method to vertical bongo nets for sampling zooplankton abundance and distribution is assessed. Analysis is based on 14 taxonomic groups representing a wide variety of organism sizes. Samples were collected in March 2004 in the southern Benguela, South Africa. In total, 64 CUFES samples were collected while the ship was underway and 32 CUFES and vertical bongo net on-station samples were collected along four inshore-offshore transects. The frequencies of obtaining the taxa using the CUFES and vertical bongo net samples were the same for small copepods, amphipod adults and juveniles, and Nannocalanus.
Hermans, Yannick [Verfasser], Wolfram [Akademischer Betreuer] Jaegermann i Thierry [Akademischer Betreuer] Toupance. "Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting / Yannick Hermans ; Wolfram Jaegermann, Thierry Toupance". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1188817647/34.
Pełny tekst źródłaLusa, Makeli Garibotti. "Caracterização morfoanatômica e histoquímica de Cuphea Carthagenensis (Jacq.) J.F. Macbr.(Lytraceace) e avaliação em ambientes hidrofítico e mesofítico". reponame:Repositório Institucional da UFPR, 2010. http://hdl.handle.net/1884/23385.
Pełny tekst źródłaSchuldt, Elke Zuleika. "Avaliação farmacológica do extrato bruto hidroalcóolico, frações e composto isolado de Cuphea carthagenensis Jacq McBrite (sete-sangrias) determinação da capacidade de antioxidante /". Florianópolis, SC, 1999. http://repositorio.ufsc.br/xmlui/handle/123456789/81043.
Pełny tekst źródłaMade available in DSpace on 2012-10-18T22:16:01Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-09T01:58:00Z : No. of bitstreams: 1 147104.pdf: 3557687 bytes, checksum: f8fe92b9263ee58f8393b5fffd5ec154 (MD5)
Lalanne, Maëva. "Étude de phases delafossite CuFe1-xCrxO2 : vers de nouveaux TCO de type p". Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1257/.
Pełny tekst źródłaThis work concerns the development of CuFe1-xCrxO2:Mg delafossite oxide thin films deposited by RF-magnetron sputtering for the potential transparent conductor applications. Various CuFe1-xCrxO2 (0 = x = 1) powders were synthesized by a standard solid-state reaction. These oxides crystallize with the delafossite structure and a complete solid solution was obtained. Thermo-structural study has revealed the stability range of CuFe1-xCrxO2 compounds under oxidizing and reducing atmosphere. Their physical properties were also characterized. Thus, we showed that the stability range increases with the chromium quantity and chromium-rich delafossites are the most conductive and the least absorbent. Then, CuFeO2:Mg and CuCrO2:Mg delafossite thin films were prepared at room temperature by RF-magnetron sputtering from ceramic targets. After annealing under vacuum at 450°C, CuFeO2:Mg thin films have too low optoelectronic properties for p-type TCO application in the visible range; however these compounds are promising for infra-red TCO applications and/or absorber for photovoltaic application. After annealing under vacuum at 450°C, the p-type conductivity and the bandgap of CuCrO2:Mg thin films are about 0,1 S. Cm-1 and 3,13 eV respectively. These values can be increased by annealing at higher temperature than 450°C
Książki na temat "CuFeS2"
CUFFS: Cuffs / holiday hookup. [Place of publication not identified]: MILLS & BOON, 2020.
Znajdź pełny tekst źródłaCocek, Christina. Stiff cuffs. Boston (100 Chauncy St., Boston 02111): Baker's Plays, 1994.
Znajdź pełny tekst źródłaKnitting beyond the edge: Cuffs & collars, necklines, corners & edges, closures : the essential collection of decorative finishes. [New York]: Sixth&Spring Books, 2006.
Znajdź pełny tekst źródłaJackie, Sheeler, i Holman Bob 1948-, red. Off the cuffs: Poetry by and about the police. Brooklyn, NY: Soft Skull Press, 2003.
Znajdź pełny tekst źródłaScott, Tui A. The Harris family history: (including Cuffs, Mastersons, De Witts, and others). Morrinsville: T.A. Scott, 1988.
Znajdź pełny tekst źródłaField, Elaine. Cuddly Cuffs Clothes (Cuddly Cuffs). Tiger Tales, 2003.
Znajdź pełny tekst źródłaField, Elaine. Cuddly Cuffs Toys (Cuddly Cuffs). Tiger Tales, 2003.
Znajdź pełny tekst źródłaLockwood, Cara. Cuffs. Harlequin Enterprises ULC, 2020.
Znajdź pełny tekst źródłaLockwood, Cara. Cuffs. Harlequin Mills & Boon, Limited, 2020.
Znajdź pełny tekst źródłaFinn, Rebecca. Cuddly Cuffs (Animal Faces Cuddly Cuffs). Little Tiger Press, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "CuFeS2"
Kobayashi, Hisao, Hideya Onodera i Takashi Kamimura. "Electronic Properties of CuFeS2 under Pressure Studied by Mössbauer Spectroscopy". W Hyperfine Interactions (C), 165–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_41.
Pełny tekst źródłaMulaba-Bafubiandi, Antoine F. "Characterization of products emanating from conventional and microwave energy roasting of chalcopyrite (CuFeS2) concentrate". W ICAME 2005, 923–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-49853-7_37.
Pełny tekst źródłaVillars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk i in. "CuFeO2". W Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 495–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_384.
Pełny tekst źródłaKawazoe, Yoshiyuki, Takeshi Kanomata i Ryunosuke Note. "CuFeO2". W High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, 143–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-64593-2_29.
Pełny tekst źródłaMcConnell, Larissa. "Cuffs". W Foundations of Flat Patterning and Draping, 228–30. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003022619-14.
Pełny tekst źródłaPosypaiko, V. I., i E. A. Alekseeva. "CuF2". W Phase Equilibria in Binary Halides, 162. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-9024-4_45.
Pełny tekst źródłaNolan, Thomas. "“Taking Off the Cuffs”". W Perilous Policing, 126–42. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Identifiers: LCCN 2018048190 (print) | LCCN 2018051056 (ebook) | ISBN 9780429398414 (Ebook) | ISBN 9780367026691 (hardback) | ISBN 9780367026707 (pbk.): Routledge, 2019. http://dx.doi.org/10.4324/9780429398414-9.
Pełny tekst źródłaBell, Matthew, i Gary Armstrong. "The Attraction of ‘Fisti-Cuffs’". W A Social History of Sheffield Boxing, Volume I, 51–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63545-9_3.
Pełny tekst źródłaSpittel, Marlene, i Thilo Spittel. "Flow stress, mechanical and physical properties of CuFe2P". W Part 3: Non-ferrous Alloys - Heavy Metals, 161–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-14174-4_15.
Pełny tekst źródłaHirota, E., K. Kuchitsu, T. Steimle, J. Vogt i N. Vogt. "109 CuFN2 Copper fluoride – dinitrogen (1/1)". W Molecules Containing No Carbon Atoms and Molecules Containing One or Two Carbon Atoms, 140. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-540-70614-4_110.
Pełny tekst źródłaStreszczenia konferencji na temat "CuFeS2"
Tonpe, Dipak, Ketan Gattu, Ganesh More, Deepak Upadhye, Sandip Mahajan i Ramphal Sharma. "Synthesis of CuFeS2 thin films from acidic chemical baths". W INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946727.
Pełny tekst źródłaNawaz, Sajid, Khalid Hussain Thebo, Mohammad Azad Malik i Abdul Qadeer Malik. "Deposition of CuFeS2 and Cu2FeSnS4 thin films and nanocrystals using diisobutyldithiophosphinato-metal precursors". W 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2020. http://dx.doi.org/10.1109/ibcast47879.2020.9044518.
Pełny tekst źródłaTonpe, Dipak A., Ketan P. Gattu, Vishnu V. Kutwade, Makrand E. Sonawane i Ramphal Sharma. "Growth and optoelectronic properties of CuFeS2 thin film and effect of annealing temperature". W NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061419.
Pełny tekst źródłaBellec, Jacques H., i Tahar M. Kechadi. "Cufres". W the ACM first Ph.D. workshop in CIKM. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1316874.1316884.
Pełny tekst źródłaDhruv, Preksha N., Neha P. Solanki i Rajshree B. Jotania. "Structural properties of delafossite multiferroic CuFeO2 powder". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982089.
Pełny tekst źródłaRuttanapun, Chesta, Yuttana Hongaromkid, Warawoot Thowladda i Aree Wichainchai. "Alcohol sensing of p-type CuFeO2 delafossite oxide". W International Conference on Photonics Solutions 2013, redaktorzy Prathan Buranasiri i Sarun Sumriddetchkajorn. SPIE, 2013. http://dx.doi.org/10.1117/12.2021102.
Pełny tekst źródłaSingh, Manoj K., G. L. Sharma, S. Dussan i Ram S. Katiyar. "Structural properties of multiferroic CuFeO2 thin films prepared by RF sputtering". W 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693787.
Pełny tekst źródłaLee, P. C., M. N. Ou, J. Y. Luo, M. K. Wu i Y. Y. Chen. "Cross-plane Seebeck coefficient and thermal conductivity of CuFeSe2 thin film". W 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011. AIP, 2012. http://dx.doi.org/10.1063/1.4731582.
Pełny tekst źródłaJiang, Chang-Ming, Ian Sharp i Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.161.
Pełny tekst źródłaJiang, Chang-Ming, Ian Sharp i Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.161.
Pełny tekst źródła