Gotowa bibliografia na temat „CubeSat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CubeSat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CubeSat"
De Leon, Michael B., Ulysses B. Ante, Madelene S. Velasco, Arvin Oliver S. Ng, Joseph Alfred V. Garcia, Fred P. Liza, Rigoberto C. Advincula i John Ryan C. Dizon. "3D-Printing for Cube Satellites (CubeSats): Philippines‘ Perspectives". Engineering Innovations 1 (25.03.2022): 13–27. http://dx.doi.org/10.4028/p-35niy3.
Pełny tekst źródłaMenchinelli, Alessandro, Francesca Ingiosi, Ludovico Pamphili, Paolo Marzioli, Riccardo Patriarca, Francesco Costantino i Fabrizio Piergentili. "A Reliability Engineering Approach for Managing Risks in CubeSats". Aerospace 5, nr 4 (15.11.2018): 121. http://dx.doi.org/10.3390/aerospace5040121.
Pełny tekst źródłaSibanda, Matthew, i Robert Ryk van Zyl. "Practical electromagnetic compatibility studies of a CubeSat". Journal of Engineering, Design and Technology 14, nr 4 (3.10.2016): 770–80. http://dx.doi.org/10.1108/jedt-04-2014-0025.
Pełny tekst źródłaAlanazi, Abdulaziz, i Jeremy Straub. "Engineering Methodology for Student-Driven CubeSats". Aerospace 6, nr 5 (13.05.2019): 54. http://dx.doi.org/10.3390/aerospace6050054.
Pełny tekst źródłaLu, Sining, Panagiotis Ioannis Theoharis, Raad Raad, Faisel Tubbal, Angelos Theoharis, Saeid Iranmanesh, Suhila Abulgasem, Muhammad Usman Ali Khan i Ladislau Matekovits. "A Survey on CubeSat Missions and Their Antenna Designs". Electronics 11, nr 13 (27.06.2022): 2021. http://dx.doi.org/10.3390/electronics11132021.
Pełny tekst źródłaVillela, Thyrso, Cesar A. Costa, Alessandra M. Brandão, Fernando T. Bueno i Rodrigo Leonardi. "Towards the Thousandth CubeSat: A Statistical Overview". International Journal of Aerospace Engineering 2019 (10.01.2019): 1–13. http://dx.doi.org/10.1155/2019/5063145.
Pełny tekst źródłaMeftah, Mustapha, Fabrice Boust, Philippe Keckhut, Alain Sarkissian, Thomas Boutéraon, Slimane Bekki, Luc Damé i in. "INSPIRE-SAT 7, a Second CubeSat to Measure the Earth’s Energy Budget and to Probe the Ionosphere". Remote Sensing 14, nr 1 (1.01.2022): 186. http://dx.doi.org/10.3390/rs14010186.
Pełny tekst źródłaBenson, Ilia, Adam Kaplan, James Flynn i Sharlene Katz. "Fault-Tolerant and Deterministic Flight-Software System For a High Performance CubeSat". International Journal of Grid and High Performance Computing 9, nr 1 (styczeń 2017): 92–104. http://dx.doi.org/10.4018/ijghpc.2017010108.
Pełny tekst źródłaVidal-Valladares, Matías G., i Marcos A. Díaz. "A Femto-Satellite Localization Method Based on TDOA and AOA Using Two CubeSats". Remote Sensing 14, nr 5 (24.02.2022): 1101. http://dx.doi.org/10.3390/rs14051101.
Pełny tekst źródłaStesina, Fabrizio, Sabrina Corpino i Daniele Calvi. "A Test Platform to Assess the Impact of Miniaturized Propulsion Systems". Aerospace 7, nr 11 (16.11.2020): 163. http://dx.doi.org/10.3390/aerospace7110163.
Pełny tekst źródłaRozprawy doktorskie na temat "CubeSat"
Erlank, Alexander Olaf. "Development of CubeStar : a CubeSat-compatible star tracker". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85746.
Pełny tekst źródłaENGLISH ABSTRACT: The next generation of CubeSats will require accurate attitude knowledge throughout orbit for advanced science payloads and high gain antennas. A star tracker can provide the required performance, but star trackers have traditionally been too large, expensive and power hungry to be included on a CubeSat. The aim of this project is to develop and demonstrate a CubeSat compatible star tracker. Subsystems from two other CubeSat components, CubeSense and CubeComputer, were combined with a sensitive, commercial image sensor and low-light lens to produce one of the smallest star trackers in existence. Algorithms for star detection, matching and attitude determination were investigated and implemented on the embedded system. The resultant star tracker, named CubeStar, can operate fully autonomously, outputting attitude estimates at a rate of 1 Hz. An engineering model was completed and demonstrated an accuracy of better than 0.01 degrees during night sky tests.
AFRIKAANSE OPSOMMING: Die volgende generasie van CubeSats sal akkurate orientasie kennis vereis gedurende 'n volle omwentelling van die aarde. 'n Sterkamera kan die vereiste prestasie verskaf, maar sterkameras is tradisioneel te groot, duur en krag intensief om ingesluit te word aanboord 'n CubeSat. Die doel van hierdie projek is om 'n CubeSat sterkamera te ontwikkel en te demonstreer. Substelsels van twee ander CubeSat komponente, CubeSense en CubeComputer, was gekombineer met 'n sensitiewe kommersiële beeldsensor en 'n lae-lig lens om een van die kleinste sterkameras op die mark te produseer. Algoritmes vir die ster opsporing, identi kasie en orientasie bepaling is ondersoek en geïmplementeer op die ingebedde stelsel. Die gevolglike sterkamera, genaamd CubeStar, kan ten volle outonoom orientasie afskattings lewer teen 'n tempo van 1 Hz. 'n Ingenieursmodel is voltooi en 'n akkuraatheid van beter as 0.01 grade is gedemonstreer.
Slettebo, Christian. "CubeSub : A CUBESAT BASED SUBMERSIBLE TESTBED FOR SPACE TECHNOLOGY". Thesis, KTH, Flygdynamik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198521.
Pełny tekst źródłacastello, brian. "CUBESAT MISSION PLANNING TOOLBOX". DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/787.
Pełny tekst źródłaTapparel, Pierre-André. "CDMS pour cubesat /". Sion, 2006. http://doc.rero.ch/search.py?recid=8376&ln=fr.
Pełny tekst źródłaHorký, Jan. "Řídicí jednotka pro CubeSat". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318165.
Pełny tekst źródłaHarris, Anthony D. "NPS CubeSat Launcher-lite sequence". Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Jun/09Jun%5FHarris.pdf.
Pełny tekst źródłaThesis Advisor(s): Newman, James H. "June 2009." Description based on title screen as viewed on July 10, 2009. Author(s) subject terms: NPSCuL, NPSCuL-Lite, P-POD, Sequencer, Launcher, Launch Vehicle, Microcontroller, Space, Satellite. Includes bibliographical references (p. 167-168). Also available in print.
Hicks, Christina M. "NPS CubeSat Launcher program management". Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FHicks.pdf.
Pełny tekst źródłaThesis Advisor(s): Newman, James H. "September 2009." Description based on title screen as viewed on November 10, 2009. Author(s) subject terms: NPSCuL, CubeSat, Launcher, P-POD, ABC, Aft Bulkhead Carrier, Centaur, ESPA, Secondary Payload, Program Management. Includes bibliographical references (p. 61-63). Also available in print.
Frances, Matas Jordi. "Internal Wireless Bus for a CubeSat". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23088.
Pełny tekst źródłaGriffith, Robert C. "Mobile Cubesat Command and Control (MC3)". Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5591.
Pełny tekst źródłaThe Mobile CubeSat Command and Control (MC3) program will become the ground segment of the Colony II satellite program. The MC3 ground station contains Commercial Off-the-Shelf (COTS) hardware with Government Off-the-Shelf (GOTS) software making it an affordable option for government agencies and universities participating in the Colony II program. Further, the MC3 program provides educational opportunities to students and training to space professionals in satellite communications. This thesis analyzes the MC3 program from the program manager's point of view providing a Concept of Operations (CONOPS) of the program as well as initial analysis of MC3 ground station locations. Also included in this thesis is a future cost analysis of the MC3 program as well as lessons learned from the NPS acquisition process.
Ziegler, Caleb Kevin. "A jam-resistant CubeSat communications architecture". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112484.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-140).
This thesis proposes a communications system that utilizes the benefits of CubeSats to provide jam-resistant communications. The growth of CubeSats within educational communities has prompted their use in industry; both industry and academia have contributed towards making CubeSats much more capable. CubeSats can now perform many advanced missions, from technology demonstrations to Earth observation missions and science missions. Meanwhile, military satellite communications (MILSATCOM) continues to rely primarily on large, highly-capable satellites. CubeSats could augment MILSATCOM by providing many low-cost space terminals with short development times as a means to create a more robust communications suite. The CubeSat communications architecture proposed in this thesis aims to support mobile users in hostile environments who need to relay information to a command center. Jam-resistant communications are achieved by performing ground-based beam-forming (GBBF) on a radio-frequency (RF) uplink and relaying the information to a ground station via a laser communications (lasercom) downlink: each CubeSat acts as an element of a sparse antenna array. With the growth of free-space lasercom in the last decade, lasercom is now a reality on CubeSat-scale platforms. Lasercom systems have lower size, weight, and power (SWaP) compared to RF systems with similar data rates, making them a good fit for CubeSat platforms. GBBF is a special case of beamforming where each element of an antenna array relays its signal to a ground station for processing, minimizing complexity on the space terminal. Beam-forming provides anti-jamming capabilites due to the spacings between elements in the array, also known as spatial diversity. This spatial diversity allows spatial filtering to occur, which modifies the array's radiation pattern to mitigate interference, add gain to the main lobe, or add multiple beams. The system is designed with the goal of minimizing cost and development time, and two ways of accomplishing this are by supporting currently fielded handheld RF transmitters and by utilizing a lasercom downlink which is being developed as part of the Nanosatellite Optical Downlink Experiment (NODE) in MIT's Space, Telecommunications, Astronomy, and Radiation Lab (STARLab). This thesis builds on previous work done on the NODE project, specifically the waveform design for NODE. NODE is a 3U CubeSat demonstrating a lasercom down-link while in low Earth Orbit (LEO). NODE uses 200mW transmit power to obtain data rates from 8 Mbps to 80 Mbps. The Optical Communications Telescope Laboratory (OCTL) at the Jet Propulsion Laboratory (JPL) and an amateur telescope will be used as optical ground stations. In order to send information to the ground station, NODE uses a waveform that provides forward error correction (FEC) and interleaving to mitigate channel effects. This thesis develops the channel coding, interleaving, modulation, and framing approach employed in the NODE waveform to provide error-free communications. A Reed-Solomon code, selected because of its performance and the existence of open-source implementations, provides error-correction capabilities. NODE uses a one-second interleaver to combat the effects of channel fading when the laser beam passes through the atmosphere. The transmitter uses pulse position modulation (PPM), an intensity modulation scheme that uses the delay of a single pulse within a symbol time to transmit information, due to the advantages in using a duty-cycled waveform with an average-power limited optical amplifier. Since the delay of the pulse conveys information for PPM, the transmitter clock must be recovered in order to properly demodulate the received waveform, and NODE uses inter-symbol guard times to encode the transmitter clock onto the waveform. Python simulations are presented showing that the channel coding, interleaving, and modulation are sufficient to obtain error-free communications with a target channel bit error rate (BER) of 1 x 10-⁴. The modulator is implemented within a field programmable gate array (FPGA), and the design, validation, and testing of the modulator are described. The feasibility of performing GBBF on RF uplinks to CubeSats in LEO, where each CubeSat acts as an element of an adaptive array, is examined. The high Doppler and large spacing between CubeSats requires the use of a space-time-frequency adaptive processor (STFAP). The STFAP consists of Doppler and delay taps, complex weights, an adaptive processor, a polyphase filter bank, and a polyphase combiner. The STFAP becomes infeasible as the Doppler and delay spread between different CubeSats increases, and analysis is used to identify scenarios where the Doppler and delay spreads seen in LEO are acceptable. Systems Tool Kit (STK) simulations are performed to analyze the Doppler and delay environment in LEO. Two CubeSat formations and multiple orientations between a user and jammer are examined to determine cases where null-forming, a special case of beamforming, is effective. A constellation is necessary to provide global coverage and maximize the effectiveness of null-forming, and two possible constellations are discussed.
by Caleb Kevin Ziegler.
S.M.
Książki na temat "CubeSat"
Italy) IAA Conference on University Satellite Missions and CubeSat Workshop (5th 2020 Rome. Fifth IAA Conference on University Satellite Missions and CubeSat Workshop 2020: Proceedings of the 5th Conference on Unbiversity Satellite Missions and CubeSat Workshop, held January 28-31, 2020, Rome, Italy. San Diego, Calif: Published for the American Astronautical Society by Univelt, 2020.
Znajdź pełny tekst źródłaKwon, Young W. Direct manufacturing of CubeSat using 3-D digital printer and determination of its mechanical properties. Monterey, California: Naval Postgraduate School, 2010.
Znajdź pełny tekst źródłaOlson, Nathan. Cubes. Mankato, Minn: Capstone Press, 2008.
Znajdź pełny tekst źródłaillustrator, Mitter Kathy, red. Cubes. Minneapolis: Magic Wagon, 2012.
Znajdź pełny tekst źródła1922-, Hemmings Ray, i Leapfrogs Limited, red. Cubes. Diss: Leapfrogs, 1986.
Znajdź pełny tekst źródłaCubes: Roman. Paris: Stock, 2009.
Znajdź pełny tekst źródłaCubos =: Cubes. North Mankato, MN: Capstone Press, 2013.
Znajdź pełny tekst źródłaLewitt, Sol. 100 cubes. Ostfildern: Cantz, 1996.
Znajdź pełny tekst źródłaLewitt, Shariann. 100 cubes. Ostfildern [Germany]: Cantz, 1996.
Znajdź pełny tekst źródłaAmerica, Cuisenaire Company of, red. Snap cubes. White Plains, NY: Cuisenaire Co. of America, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "CubeSat"
Welle, Richard P. "Overview of CubeSat Technology". W Handbook of Small Satellites, 1–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20707-6_3-1.
Pełny tekst źródłaWelle, Richard P. "Overview of CubeSat Technology". W Handbook of Small Satellites, 51–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36308-6_3.
Pełny tekst źródłaSuhadis, N. M. "Statistical Overview of CubeSat Mission". W Lecture Notes in Mechanical Engineering, 563–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4756-0_50.
Pełny tekst źródłaBrandon, Carl, i Peter Chapin. "A SPARK/Ada CubeSat Control Program". W Reliable Software Technologies – Ada-Europe 2013, 51–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38601-5_4.
Pełny tekst źródłaWelle, Richard, Siegfried Janson, Darren Rowen i Todd Rose. "CubeSat-Scale High-Speed Laser Downlinks". W Proceedings of the 13th Reinventing Space Conference, 7–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32817-1_2.
Pełny tekst źródłaEastwood, Jonathan, i John Bellardo. "HeL1oNano: The first CubeSat to L1?" W Proceedings of the 13th Reinventing Space Conference, 49–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32817-1_6.
Pełny tekst źródłaSperetta, Stefano, Angelo Cervone, Prem Sundaramoorthy, Ron Noomen, Samiksha Mestry, Ana Cipriano, Francesco Topputo i in. "LUMIO: An Autonomous CubeSat for Lunar Exploration". W Space Operations: Inspiring Humankind's Future, 103–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11536-4_6.
Pełny tekst źródłaKelley, R. L., i D. R. Jarkey. "Cubesat Material Limits for Design for Demise". W Space Safety is No Accident, 479–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15982-9_55.
Pełny tekst źródłaHonoré-Livermore, Evelyn, i Cecilia Haskins. "Model-Based Systems Engineering for CubeSat FMECA". W Recent Trends and Advances in Model Based Systems Engineering, 529–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82083-1_45.
Pełny tekst źródłaSchoolcraft, Josh, Andrew Klesh i Thomas Werne. "MarCO: Interplanetary Mission Development on a CubeSat Scale". W Space Operations: Contributions from the Global Community, 221–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51941-8_10.
Pełny tekst źródłaStreszczenia konferencji na temat "CubeSat"
Woo, Hyunwook, Octavio Rico, Simone Chesi i Marcello Romano. "CubeSat Three Axis Simulator(CubeTAS)". W AIAA Modeling and Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-6271.
Pełny tekst źródłaKhan, Muhammad Shadab, Rauno Gordon, Martin Simon, Kristjan Tonismae, Dzmitry Kananovich, Veljo Sinivee, Marko Karm i Kaarel Repän. "Development and flight results of TalTech University CubeSat mission". W Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.117.
Pełny tekst źródłaEschelmüller, V., A. Stren, M. Issa, J. Bauer, A. Goswami, E. Vitztum, K. Repän, W. Treberspurg i C. Scharlemann. "Development of a CubeSat CLIMBing to the Van-Allen belt". W Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.048.
Pełny tekst źródła"CubeSat Program". W 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-p.5.b.06.
Pełny tekst źródłaCormier, Luis, Daniel Robson i Henry Cope. "FlatSat workshops teaching fundamental electronics skills for CubeSat building". W Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.095.
Pełny tekst źródłaAli, Anwar, Leonardo Reyneri, Juan Carlos de los Rios, Haider Ali i M. Rizwan Mughal. "Reconfigurable magnetorquer for the CubePMT module of CubeSat satellites". W 2012 15th International Multitopic Conference (INMIC). IEEE, 2012. http://dx.doi.org/10.1109/inmic.2012.6511478.
Pełny tekst źródłaPurio, Mark Angelo C., Timothy Ivan Leong, Yasir M. O. Abbas, Hoda Awny Elmegharbel, Koju Hiraki i Mengu Cho. "On-board image classification payload for a 3U CubeSat using machine learning for on-orbit cloud detection". W Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.112.
Pełny tekst źródła"CubeSat Technical Aspects". W 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-p.5.b.07.
Pełny tekst źródłaKinoshita, Nobuaki, Satoshi Okino, Kazumasa Sase, Shigeki Uchiyama, Sotaro Hashiguchi, Hisayuki Nakatsuji, Masahiro Yanagisawa i in. "Development of CubeSat". W 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-b5.6.a.05.
Pełny tekst źródłaPrzybyła, Rafał, Przemyslaw Kryczka i Edyta Dziemińska. "CubeSat: student satellite". W SPIE Proceedings, redaktor Ryszard S. Romaniuk. SPIE, 2006. http://dx.doi.org/10.1117/12.675033.
Pełny tekst źródłaRaporty organizacyjne na temat "CubeSat"
de Vries, Wim. Cubesat Drag Calculations. Office of Scientific and Technical Information (OSTI), sierpień 2010. http://dx.doi.org/10.2172/1124870.
Pełny tekst źródłaShiroma, Wayne A., Larry K. Martin, Nicholas G. Fisher, Windell H. Jones, John G. Furumo, Jr Ah Heong, Umeda James R. i Monica M. Ho' oponopono: A Radar Calibration CubeSat. Fort Belvoir, VA: Defense Technical Information Center, październik 2011. http://dx.doi.org/10.21236/ada564129.
Pełny tekst źródłaRossberg, Felix. Structural Design of a NPS CubeSat Launcher. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2008. http://dx.doi.org/10.21236/ada490976.
Pełny tekst źródłaAkins, Alexander Brooks. Payload Communications Interface for CubeSat Platform: Design Review. Office of Scientific and Technical Information (OSTI), sierpień 2015. http://dx.doi.org/10.2172/1209454.
Pełny tekst źródłaNathan Jerred, Troy Howe, Adarsh Rajguru i Dr. Steven Howe. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report. Office of Scientific and Technical Information (OSTI), czerwiec 2014. http://dx.doi.org/10.2172/1134415.
Pełny tekst źródłaMastrogiannis, Evangelos. Theoretical and Experimental Validation of a CubeSat's L-Band Communication System. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.7438.
Pełny tekst źródłaSouza, P. Ultrasonic Time-of-Flight Measurements on Binary U-6Nb Cubes. Office of Scientific and Technical Information (OSTI), grudzień 2004. http://dx.doi.org/10.2172/15016861.
Pełny tekst źródłaLedbetter, W. B., Matti Relis i Robert Denson. Feasibility of Producing Large-Sized, High-Strength Motor & Concrete Cubes. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1986. http://dx.doi.org/10.21236/ada167993.
Pełny tekst źródłaFarber, Steven. Connecting People to Places: Spatiotemporal Analysis of Transit Supply Using Travel-Time Cubes. Portland State University Library, czerwiec 2016. http://dx.doi.org/10.15760/trec.143.
Pełny tekst źródłaHoover, Donald R. Deriving and Applying Improved Upper Bounds for Multivariate Normal Probability Outside of N-Cubes. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1988. http://dx.doi.org/10.21236/ada198193.
Pełny tekst źródła