Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: CuAlS2.

Artykuły w czasopismach na temat „CuAlS2”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CuAlS2”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Azuhata, T., T. Terasako, K. Yoshida, T. Sota, K. Suzuki i S. Chichibu. "Lattice dynamics of CuAlS2 and CuAlSe2". Physica B: Condensed Matter 219-220 (kwiecień 1996): 496–98. http://dx.doi.org/10.1016/0921-4526(95)00790-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Roa, L., J. C. Chervin, J. P. Iti�, A. Polian, M. Gauthier i A. Chevy. "High-Pressure Structural Study of CuAlS2 and CuAlSe2". physica status solidi (b) 211, nr 1 (styczeń 1999): 455–59. http://dx.doi.org/10.1002/(sici)1521-3951(199901)211:1<455::aid-pssb455>3.0.co;2-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kumar, Ravhi S., A. Sekar, N. Victor Jaya, S. Natarajan i S. Chichibu. "Structural studies of CuAlSe2 and CuAlS2 chalcopyrites at high pressures". Journal of Alloys and Compounds 312, nr 1-2 (listopad 2000): 4–8. http://dx.doi.org/10.1016/s0925-8388(00)00909-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kumar, Ravhi S., A. Sekar, N. Victor Jaya, S. Natarajan i S. Chichibu. "ChemInform Abstract: Structural Studies of CuAlSe2 and CuAlS2 Chalcopyrites at High Pressures." ChemInform 32, nr 15 (10.04.2001): no. http://dx.doi.org/10.1002/chin.200115007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Harichandran, G., i N. P. Lalla. "Facile synthesis of CuAlS2 nanorods". Materials Letters 62, nr 8-9 (marzec 2008): 1267–69. http://dx.doi.org/10.1016/j.matlet.2007.08.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Abaab, M., A. S. Bouazzi i B. Rezig. "Competitive CuAlS2 oxygen gas sensor". Microelectronic Engineering 51-52 (maj 2000): 343–48. http://dx.doi.org/10.1016/s0167-9317(99)00495-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Aksenov, Igor, Takashi Yasuda, Tetsuya Kai, Nobuyuki Nishikawa, Tsuyoshi Ohgoh i Katsuaki Sato. "Photoluminescence of Cd-Doped CuAlS2". Japanese Journal of Applied Physics 32, Part 1, No. 3A (15.03.1993): 1068–69. http://dx.doi.org/10.1143/jjap.32.1068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Aksenov, Igor, Masahiro Matsui, Tetsuya Kai i Katsuaki Sato. "Photoluminescence Studies in CuAlS2:Zn". Japanese Journal of Applied Physics 32, Part 1, No. 10 (15.10.1993): 4542–49. http://dx.doi.org/10.1143/jjap.32.4542.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kuroki, Yuichiro, Ariyuki Kato, Tomoichiro Okamoto i Masasuke Takata. "Excitonic photoluminescence in CuAlS2 powders". Journal of Electroceramics 21, nr 1-4 (1.09.2007): 378–80. http://dx.doi.org/10.1007/s10832-007-9200-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sugan, S., K. Baskar i R. Dhanasekaran. "Structural, morphological and optical studies on CuAlS2 and CuAlSe2 nanorods prepared by hydrothermal method". Journal of Alloys and Compounds 645 (październik 2015): 85–89. http://dx.doi.org/10.1016/j.jallcom.2015.04.129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Aksenov, Igor, Takashi Yasuda, Yusaburo Segawa i Katsuaki Sato. "Violet photoluminescence in Zn‐doped CuAlS2". Journal of Applied Physics 74, nr 3 (sierpień 1993): 2106–8. http://dx.doi.org/10.1063/1.354732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Aksenov, Igor, i Katsuaki Sato. "Visible photoluminescence of Zn‐doped CuAlS2". Applied Physics Letters 61, nr 9 (31.08.1992): 1063–65. http://dx.doi.org/10.1063/1.107717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa i Katsuaki Sato. "Optical Absorption of Co2+in CuAlS2". Japanese Journal of Applied Physics 32, Part 2, No. 4A (1.04.1993): L516—L519. http://dx.doi.org/10.1143/jjap.32.l516.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Aksenov, Igor, Yuki Kudo i Katsuaki Sato. "ESR of Tb3+Ion in CuAlS2". Japanese Journal of Applied Physics 31, Part 2, No. 8A (1.08.1992): L1009—L1011. http://dx.doi.org/10.1143/jjap.31.l1009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kimura, Yasukazu, Tsuyoshi Ohgoh, Igor Aksenov i Katsuaki Sato. "Optical Properties of Er-Doped CuAlS2". Japanese Journal of Applied Physics 35, Part 1, No. 7 (15.07.1996): 3904–8. http://dx.doi.org/10.1143/jjap.35.3904.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Aksenov, I. A., I. R. Gulakov, V. I. Lipnitskii, A. I. Lukomskii i L. A. Makovetskaya. "Cathodoluminescence and electrical properties of CuAlS2". Physica Status Solidi (a) 115, nr 1 (16.09.1989): K113—K116. http://dx.doi.org/10.1002/pssa.2211150166.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Andriesh, A. M., N. N. Syrbu, M. S. Iovu i V. E. Tazlavan. "Infrared Vibrational Modes and Anisotropy of the Effective Ionic Charge in CuAlSe2, CuAlS2, and CuGaSe2 Crystals". physica status solidi (b) 187, nr 1 (1.01.1995): 83–92. http://dx.doi.org/10.1002/pssb.2221870107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Masnic, Alisa, Victor Zalamai i Veaceslav Ursaki. "OPTICAL ANISOTROPY AND BIREFRINGENCE OF CuAlS2 CRYSTALS". Journal of Engineering Science XXVIII, nr 2 (czerwiec 2021): 25–33. http://dx.doi.org/10.52326/jes.utm.2021.28(2).01.

Pełny tekst źródła
Streszczenie:
Optical spectra were investigated in a spectral range of (300 - 700) nm for CuAlS2 single crystals. Transmission and wavelength modulated transmission spectra demonstrated presence of some impurity absorption bands in the region of optical transparency of crystals. Optical functions (real and imaginary components of the dielectric function, refractive index and extinction coefficient) have been calculated from the optical reflection spectra by means of the Kramers-Kronig relations. A strong anisotropy and birefringence have been revealed for CuAlS2 crystals. Two isotropic points have been found in (100) oriented platelets around 380 nm and 530 nm. The position of the isotropic point around 530 nm was found to be strongly influenced by the technological conditions of crystal growth and platelet thickness, it being situated at 535 nm for a platelet with thickness of 223 µm. An optical band-pass filter was constructed with such a platelet placed between two Gran-Thompson prism crossed polarizers.
Style APA, Harvard, Vancouver, ISO itp.
19

Liu, Min-Ling, Fu-Qiang Huang, Li-Dong Chen, Yao-Ming Wang, Ying-Hua Wang, Gui-Feng Li i Qun Zhang. "p-type transparent conductor: Zn-doped CuAlS2". Applied Physics Letters 90, nr 7 (12.02.2007): 072109. http://dx.doi.org/10.1063/1.2591415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Nakahara, J., K. Itoh, K. Sato i S. Yamamoto. "Photoluminescence spectra of CuAlS2 doped with Er". Journal of Luminescence 87-89 (maj 2000): 1112–14. http://dx.doi.org/10.1016/s0022-2313(99)00560-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Roa, L., J. Gonz�lez, J. C. Chervin i A. Chevy. "High Pressure Raman Scattering Study of CuAlS2". physica status solidi (b) 211, nr 1 (styczeń 1999): 429–34. http://dx.doi.org/10.1002/(sici)1521-3951(199901)211:1<429::aid-pssb429>3.0.co;2-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa i Katsuaki Sato. "Visible Photoluminescence in Undoped and Zn-doped CuAlS2". Japanese Journal of Applied Physics 32, S3 (1.01.1993): 153. http://dx.doi.org/10.7567/jjaps.32s3.153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Aksenov, Igor, Nobuyuki Nishikawa i Katsuaki Sato. "Electron spin resonance of copper vacancy in CuAlS2". Journal of Applied Physics 74, nr 6 (15.09.1993): 3811–14. http://dx.doi.org/10.1063/1.354473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Aksenov, I. A., L. A. Makovetskaya i V. A. Savchuk. "Electrical properties of cadmium and Zinc doped CuAlS2". Physica Status Solidi (a) 108, nr 1 (16.07.1988): K63—K65. http://dx.doi.org/10.1002/pssa.2211080164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Geng, J., i J. Wu. "Effects of pressure on structural, mechanical, and electronic properties of chalcopyrite compound CuAlS2". Chalcogenide Letters 20, nr 3 (marzec 2023): 215–25. http://dx.doi.org/10.15251/cl.2023.203.215.

Pełny tekst źródła
Streszczenie:
First-principles method is performed to investigate the structural, electronic, elastic and mechanical characteristics of the tetragonal CuAlS2 in the pressure range from 0 to 10 GPa. The results indicated that both the lattice constant and cell volume decrease with the increase of pressure, which are matched well with available previous values. The pressure has a more significant influence on the c direction than the a and b direction. The obtained elastic constants reveal the tetragonal CuAlS2 is mechanically stable between 0 and 10 GPa. The bulk, shear, and Young’s modulus are evaluated by Voigt-Reuss-Hill approximation. All these elastic moduli exhibit a monotonic feature as a function of pressure. The Poisson’s ratio, Pugh’s criterion, and Cauchy pressure indicate that ternary chalcopyrite semiconductor CuAlS2 is ductile against pressure. Meanwhile, the analysis of the electronic structures reveals that the states near the valence band top are derived from Cu 3d and S 3p orbitals, and the lowest conduction band is composed of Al 3p and S 3p orbitals. We expect that the findings predicted the physical properties of this compound will promote future experimental studies on CuAlS2.
Style APA, Harvard, Vancouver, ISO itp.
26

Ho, Ching Hwa, Sheng Feng Lo, Ping Chen Chi, Ching Cherng Wu, Ying Sheng Huang i Kwong Kau Tiong. "Optical Characterization of Electronic Structure of CuInS2 and CuAlS2 Chalcopyrite Crystals". Solid State Phenomena 170 (kwiecień 2011): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.21.

Pełny tekst źródła
Streszczenie:
Electronic structure of solar-energy related crystals of CuInS2 and CuAlS2 has been characterized using thermoreflectance (TR) measurement in the energy range between 1.25 and 6 eV. The TR measurements were carried out at room (~300 K, RT) and low (~30 K, LT) temperatures. A lot of interband transition features including band-edge excitons and higher-lying interband transitions were simultaneously detected in the low-temperature TR spectra of CuInS2 and CuAlS2. The energies of band-edge excitonic transitions at LT (RT) were analysed and determined to be =1.545 (1.535) and =1.554 eV (1.545 eV) for CuInS2, and =3.514 (3.486), =3.549 (3.522), and =3.666 eV (3.64 eV) for CuAlS2, respectively. The band-edge transitions of the and excitons are originated from the sulfur pp transitions in CuInS2 and CuAlS2 separated by crystal-field splitting. Several high-lying interband transitions were detected in the TR spectra of CuInS2 and CuAlS2 at LT and RT. Transition origins for the high-lying interband transitions are evaluated. The dependence of electronic band structure in between the CuInS2 and CuAlS2 is analysed and discussed.
Style APA, Harvard, Vancouver, ISO itp.
27

Shojaei, Maryam, Ali Shokuhfar i Ashkan Zolriasatein. "Synthesis and characterization of CuAlS2 nanoparticles by mechanical milling". Materials Today Communications 27 (czerwiec 2021): 102243. http://dx.doi.org/10.1016/j.mtcomm.2021.102243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sato, Katsuaki, Igor Aksenov, Nobuyuki Nishikawa i Tetsuya Kai. "Optical and ESR Characterization of Transition Atoms in CuAlS2". Japanese Journal of Applied Physics 32, S3 (1.01.1993): 481. http://dx.doi.org/10.7567/jjaps.32s3.481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lipnitskii, V. I., V. A. Savchuk, B. V. Korzun, G. I. Makovetskii i G. P. Popelnjuk. "The Recombination in Zn, Cd and Hg-Doped CuAlS2". Japanese Journal of Applied Physics 32, S3 (1.01.1993): 635. http://dx.doi.org/10.7567/jjaps.32s3.635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kuroki, Yuichiro, Tomoichiro Okamoto, Masasuke Takata i Minoru Osada. "Impacts of intrinsic defects on luminescence properties of CuAlS2". Applied Physics Letters 89, nr 22 (27.11.2006): 221117. http://dx.doi.org/10.1063/1.2400101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bairamov, B. H., A. Aydinli, I. V. Bodnar’, Yu V. Rud’, V. K. Nogoduyko i V. V. Toporov. "High power gain for stimulated Raman amplification in CuAlS2". Journal of Applied Physics 80, nr 10 (15.11.1996): 5564–69. http://dx.doi.org/10.1063/1.363820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

TSUJI, Kazuaki, i Koutoku OHMI. "Si Codoped CuAlS2:Mn Red Phosphor for White LEDs". Journal of Light & Visual Environment 32, nr 2 (2008): 135–38. http://dx.doi.org/10.2150/jlve.32.135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nishi, Takao, Yasukazu Kimura i Katsuaki Sato. "Photoluminescence studies of rare-earth-doped CuAlS2 single crystals". Journal of Luminescence 87-89 (maj 2000): 1105–7. http://dx.doi.org/10.1016/s0022-2313(99)00558-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Syrbu, N. N., B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki i I. Galbic. "Exciton spectra and energy band structure of CuAlS2 crystals". Physica B: Condensed Matter 405, nr 16 (sierpień 2010): 3243–47. http://dx.doi.org/10.1016/j.physb.2010.04.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Morita, Yoshio, i Tadashi Narusawa. "Characterization of CuAlS2 Films Grown by Molecular Beam Epitaxy". Japanese Journal of Applied Physics 31, Part 2, No. 10A (1.10.1992): L1396—L1398. http://dx.doi.org/10.1143/jjap.31.l1396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa i Katsuaki Sato. "Optical Absorption and Electron Spin Resonance in CuAlS2:Ni". Japanese Journal of Applied Physics 32, Part 1, No. 8 (15.08.1993): 3391–95. http://dx.doi.org/10.1143/jjap.32.3391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wan Wen-Jian, Yao Ruo-He i Geng Kui-Wei. "Electronic structure of CuAlS2 doped with Mg and Zn". Acta Physica Sinica 60, nr 6 (2011): 067103. http://dx.doi.org/10.7498/aps.60.067103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Sato, Katsuaki, Koki Ishii, Kunio Watanabe i Kensei Ohe. "Time-Resolved Photoluminescence Spectra in Single Crystals of CuAlS2:Mn". Japanese Journal of Applied Physics 30, Part 1, No. 2 (15.02.1991): 307–13. http://dx.doi.org/10.1143/jjap.30.307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Korzun, B. V., V. A. Virchenko i V. N. Yakimovich. "57Fe and 119Sn Mössbauer spectroscopy of the CuAlS2 chalcopyrite semiconductor". Journal of Crystal Growth 198-199 (marzec 1999): 821–24. http://dx.doi.org/10.1016/s0022-0248(98)01048-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

He, X.-C., H.-S. Shen, P. Wu, K. Dwight i A. Wold. "Growth and characterization of CuGaS2, CuAlS2 and CuGa0.9Al0.1S2 single crystals". Materials Research Bulletin 23, nr 6 (czerwiec 1988): 799–803. http://dx.doi.org/10.1016/0025-5408(88)90072-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nishi, Takao, Naohiro Ishibashi, Yuji Katsumata i Katsuaki Sato. "Near-Infrared Photoluminescence in Mo-Doped Single Crystals of CuAlS2". Japanese Journal of Applied Physics 38, Part 1, No. 2A (15.02.1999): 683–84. http://dx.doi.org/10.1143/jjap.38.683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Itoh, K., S. Yamamoto, K. Sato i J. Nakahara. "Pressure Dependence of Photoluminescence Spectra in CuAlS2 Doped with Lanthanide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 769–71. http://dx.doi.org/10.4131/jshpreview.7.769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Korzun, Barys, i Anatoly Pushkarev. "XRPD and Scanning Electron Microscopy of Alloys of the CuAlS2 – CuFeS2 System Prepared by Thermobaric Treatment". MRS Advances 3, nr 56 (2018): 3323–28. http://dx.doi.org/10.1557/adv.2018.558.

Pełny tekst źródła
Streszczenie:
ABSTRACTAlloys of the CuAlS2 – CuFeS2 system were prepared by thermobaric treatment at high pressure of 5.5 GPa and temperatures ranging from 573 to 1573 K and phase formation in the system was investigated using X-ray powder diffraction, optical microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy. The unit-cell parameters (the lattice constants and the unit-cell volume) were computed as a function of the composition. Absence of complete solubility in the (CuAlS2)1-x-(CuFeS2)x system was established. Formation of solid solutions with the tetragonal structure of chalcopyrite was detected for compositions with the molar part of CuFeS2 x not exceeding 0.10.
Style APA, Harvard, Vancouver, ISO itp.
44

Kuroki, Yuichiro, Tomoichiro Okamoto i Masasuke Takata. "Synthesis and Luminescence Properties of Chalcopyrite-Type CuAlS2". Key Engineering Materials 301 (styczeń 2006): 177–80. http://dx.doi.org/10.4028/www.scientific.net/kem.301.177.

Pełny tekst źródła
Streszczenie:
Copper aluminum disulfide (CuAlS2) powders were synthesized in an evacuated ampoule at elevated temperatures. X-ray diffraction analysis revealed that the powders heated at temperatures higher than 800oC were single-phase CuAlS2. In the cathodoluminescence (CL) spectra measured at room temperature, the powders heated at temperatures higher than 600oC exhibited a visible emission peak at approximately 1.8 eV and a distinct ultraviolet emission peak at 3.45 eV. The powder heated at 700oC showed the maximum intensity of ultraviolet emission which is considered to be associated with excitons.
Style APA, Harvard, Vancouver, ISO itp.
45

Kuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto i Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders". Advanced Materials Research 11-12 (luty 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.

Pełny tekst źródła
Streszczenie:
High-resolution photoluminescence (PL) measurement was carried out for copper aluminum disulfide (CuAlS2) powder at 12 K. Several sharp PL lines were observed in the range from 3.580 to 3.320 eV. The emission peaks at photon energies from 3.566 to 3.459 eV were attributed to free-exciton (FE) and bound-excitons (BE). The several weak emissions at below 3.476 eV were clarified to be phonon replicas (PR) by Raman scattering and in the viewpoint of exciton-phonon interaction. We observed the one, two and three-phonon replicas related to E(LO, TO) and B2(LO, TO) vibrational modes in chalcopyrite structure. It was suggested that the strong interaction between excitons and optical phonons took place in obtained CuAlS2 powder.
Style APA, Harvard, Vancouver, ISO itp.
46

Shojaei, Maryam, Ali Shokuhfar, Ashkan Zolriasatein i Ahmad Ostovari Moghaddam. "Enhanced thermoelectric performance of CuAlS2 by adding multi-walled carbon nanotubes". Advanced Powder Technology 33, nr 2 (luty 2022): 103445. http://dx.doi.org/10.1016/j.apt.2022.103445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Liborio, Leandro M., Christine L. Bailey, Giuseppe Mallia, Stanko Tomić i Nicholas M. Harrison. "Chemistry of defect induced photoluminescence in chalcopyrites: The case of CuAlS2". Journal of Applied Physics 109, nr 2 (15.01.2011): 023519. http://dx.doi.org/10.1063/1.3544206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zheng, Wen-Chen, Hui-Ning Dong, Sheng Tang i Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors". Zeitschrift für Naturforschung A 59, nr 1-2 (1.02.2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.

Pełny tekst źródła
Streszczenie:
The EPR zero-field splitting D for Fe3+ ions in some Ib-IIIb-VI2 semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ (Fe3+) for Fe3+ in CuGaS2 and AgGaS2 crystals, are consistent with the observed values, whereas for Fe3+ in CuAlS2 crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe3+ in CuAlS2 are suggested.
Style APA, Harvard, Vancouver, ISO itp.
49

Moreh, A. U. "The Effect of Sulfurisation Temperature on Structural Properties of CuAlS2 Thin Films". IOSR Journal of Applied Physics 3, nr 1 (2013): 12–17. http://dx.doi.org/10.9790/4861-0311217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Miyamoto, Yoshinobu, Tetsuo Honma i Koutoku Ohmi. "Photoluminescent Characteristics of Mn2+Centers Selectively Substituted for Different Cations in CuAlS2". Japanese Journal of Applied Physics 50, nr 10R (1.10.2011): 102401. http://dx.doi.org/10.7567/jjap.50.102401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii