Artykuły w czasopismach na temat „Cu2V2O7”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cu2V2O7”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Suganya, P., J. Princy, N. Mathivanan i Krishnasamy K. "One-Pot Synthesis of rGO@Cu2V2O7 Nanocomposite as High Stabled Electrode for Symmetric Electrochemical Capacitors". ECS Journal of Solid State Science and Technology 11, nr 4 (1.04.2022): 041005. http://dx.doi.org/10.1149/2162-8777/ac62f1.
Pełny tekst źródłaShuang, Shuang, Leonardo Girardi, Gian Rizzi, Andrea Sartorel, Carla Marega, Zhengjun Zhang i Gaetano Granozzi. "Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu2V2O7/TiO2 Nanorods Composites". Nanomaterials 8, nr 7 (18.07.2018): 544. http://dx.doi.org/10.3390/nano8070544.
Pełny tekst źródłaKrivovichev, S. V., S. K. Filatov, P. N. Cherepansky, T. Armbruster i O. Yu Pankratova. "CRYSTAL STRUCTURE OF -Cu2V2O7 AND ITS COMPARISON TO BLOSSITE ( -Cu2V2O7) AND ZIESITE ( -Cu2V2O7)". Canadian Mineralogist 43, nr 2 (1.04.2005): 671–77. http://dx.doi.org/10.2113/gscanmin.43.2.671.
Pełny tekst źródłaFontaine, Blandine, Youssef Benrkia, Jean-François Blach, Christian Mathieu, Pascal Roussel, Ahmad I. Ayesh, Adlane Sayede i Sébastien Saitzek. "Photoelectrochemical properties of copper pyrovanadate (Cu2V2O7) thin films synthesized by pulsed laser deposition". RSC Advances 13, nr 18 (2023): 12161–74. http://dx.doi.org/10.1039/d3ra01509b.
Pełny tekst źródłaKrasnenko, Tatiana, Nadezhda Medvedeva i Vitalii Bamburov. "Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion". Advances in Science and Technology 63 (październik 2010): 358–63. http://dx.doi.org/10.4028/www.scientific.net/ast.63.358.
Pełny tekst źródłaBenko, F. A., i F. P. Koffyberg. "Semiconductivity and optical interband transitions of CuV2O6 and Cu2V2O7". Canadian Journal of Physics 70, nr 2-3 (1.02.1992): 99–103. http://dx.doi.org/10.1139/p92-011.
Pełny tekst źródłaPonomarenko, L. A., A. N. Vasil'ev, E. V. Antipov i Yu A. Velikodny. "Magnetic properties of Cu2V2O7". Physica B: Condensed Matter 284-288 (lipiec 2000): 1459–60. http://dx.doi.org/10.1016/s0921-4526(99)02702-7.
Pełny tekst źródłaEGUCHI, M., I. FURUSAWA, T. MIURA i T. KISHI. "Lithium insertion characteristics of ß-Cu2V2O7". Solid State Ionics 68, nr 1-2 (luty 1994): 159–64. http://dx.doi.org/10.1016/0167-2738(94)90253-4.
Pełny tekst źródłaWang, Hui, Mengjie Yang, Mingju Chao, Juan Guo, Qilong Gao, Yajie Jiao, Xinbo Tang i Erjun Liang. "Negative thermal expansion property of β-Cu2V2O7". Solid State Ionics 343 (grudzień 2019): 115086. http://dx.doi.org/10.1016/j.ssi.2019.115086.
Pełny tekst źródłaДенисова, Л. Т., Н. В. Белоусова, В. М. Денисов i Н. А. Галиахметова. "Высокотемпературная теплоемкость оксидов системы CuO-V-=SUB=-2-=/SUB=-O-=SUB=-5-=/SUB=-". Физика твердого тела 59, nr 6 (2017): 1243. http://dx.doi.org/10.21883/ftt.2017.06.44500.407.
Pełny tekst źródłaFeng, Jian, Xia Ran, Li Wang, Bo Xiao, Li Lei, Jinming Zhu, Zuoji Liu i in. "The Synergistic Effect of Adsorption-Photocatalysis for Removal of Organic Pollutants on Mesoporous Cu2V2O7/Cu3V2O8/g-C3N4 Heterojunction". International Journal of Molecular Sciences 23, nr 22 (17.11.2022): 14264. http://dx.doi.org/10.3390/ijms232214264.
Pełny tekst źródłaPiyawongwatthana, Pharit, Daisuke Okuyama, Kazuhiro Nawa, Kittiwit Matan i Taku J. Sato. "Formation of Single Polar Domain in α-Cu2V2O7". Journal of the Physical Society of Japan 90, nr 2 (15.02.2021): 025003. http://dx.doi.org/10.7566/jpsj.90.025003.
Pełny tekst źródłaRao, Martha Purnachander, A. K. Akhila, Jerry J. Wu, Abdullah M. Asiri i Sambandam Anandan. "Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles". Solid State Sciences 92 (czerwiec 2019): 13–23. http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.021.
Pełny tekst źródłaPetrova, S. A., M. V. Rotermel, R. G. Zakharov i T. I. Krasnenko. "High-temperature X-ray study of Zn-substituted Cu2V2O7". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c469. http://dx.doi.org/10.1107/s0108767305080463.
Pełny tekst źródłaDenisova, L. T., N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov i E. O. Golubeva. "High-Temperature Heat Capacity of Zn2V2O7–Cu2V2O7 Solid Solutions". Physics of the Solid State 60, nr 7 (lipiec 2018): 1303–7. http://dx.doi.org/10.1134/s1063783418070090.
Pełny tekst źródłaSakurai, Yoji, Shin-ichi Tobishima i Jun-ichi Yamaki. "Dependence of Li/Cu2V2O7 cell characteristics on electrolytic properties". Electrochimica Acta 34, nr 7 (lipiec 1989): 981–86. http://dx.doi.org/10.1016/0013-4686(89)80024-6.
Pełny tekst źródłaZhang, Niu, Li Li, Mingyi Wu, Yuxiang Li, Dongsheng Feng, Cunyuan Liu, Yanchao Mao, Juan Guo, Mingju Chao i Erjun Liang. "Negative thermal expansion and electrical properties of α-Cu2V2O7". Journal of the European Ceramic Society 36, nr 11 (wrzesień 2016): 2761–66. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.04.030.
Pełny tekst źródłaKim, Eung Soo, Je Hun Kim, Ki Gang Lee, Seung Gu Kang i Pyung Kyu Kim. "Microwave dielectric properties of Bi(Nb1-xTax)O4ceramics with Cu2V2O7". Ferroelectrics 262, nr 1 (styczeń 2001): 263–68. http://dx.doi.org/10.1080/00150190108225160.
Pełny tekst źródłaStrukan, Neven, Gwilherm Nénert, Alexei Belik i Boris V. Slobodin. "Irreversible pressure-induced phase transformation in blossite, α-Cu2V2O7, mineral". Acta Crystallographica Section A Foundations and Advances 71, a1 (23.08.2015): s372. http://dx.doi.org/10.1107/s2053273315094450.
Pełny tekst źródłaSlobodin, B. V., i R. F. Samigullina. "Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7". Inorganic Materials 46, nr 2 (luty 2010): 196–200. http://dx.doi.org/10.1134/s0020168510020196.
Pełny tekst źródłaZhang, Niu, Yanchao Mao, Xiansheng Liu, Mengjie Yang, Xuhui Kong, Mengdi Zhang, Xiaoshuai Kong, Juan Guo, Mingju Chao i Erjun Liang. "Tailored thermal expansion and electrical properties of α-Cu2V2O7/Al". Ceramics International 42, nr 15 (listopad 2016): 17004–8. http://dx.doi.org/10.1016/j.ceramint.2016.07.207.
Pełny tekst źródłaSakurai, Yoji, i Jun-Ichi Yamaki. "Electrochemical reaction of α-Cu2V2O7 with lithium in organic electrolyte". Electrochimica Acta 34, nr 3 (marzec 1989): 355–61. http://dx.doi.org/10.1016/0013-4686(89)87011-2.
Pełny tekst źródłaWiktor, Julia, Igor Reshetnyak, Michal Strach, Mariateresa Scarongella, Raffaella Buonsanti i Alfredo Pasquarello. "Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of β-Cu2V2O7". Journal of Physical Chemistry Letters 9, nr 19 (7.09.2018): 5698–703. http://dx.doi.org/10.1021/acs.jpclett.8b02323.
Pełny tekst źródłaSchindler, Michael, i Frank C. Hawthorne. "Structural Characterization of the β-Cu2V2O7–α-Zn2V2O7 Solid Solution". Journal of Solid State Chemistry 146, nr 1 (sierpień 1999): 271–76. http://dx.doi.org/10.1006/jssc.1999.8371.
Pełny tekst źródłaKar, Abja Keshar, Bidisa Chattopadhyay, Ratnadwip Singha, Abhisikta Barman, Md A. Ahmed, A. Midya, S. Bandyopadhyay, Devajyoti Mukherjee, D. Jana i Prabhat Mandal. "Effect of Co and Mg doping at Cu site on structural, magnetic and dielectric properties of α–Cu2V2O7". Journal of Physics: Condensed Matter 34, nr 7 (30.11.2021): 075702. http://dx.doi.org/10.1088/1361-648x/ac38df.
Pełny tekst źródłaMuthamizh, S., J. Yesuraj, R. Jayavel, D. Contreras, K. Arul Varman i R. V. Mangalaraja. "Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties". Journal of Materials Science: Materials in Electronics 32, nr 3 (24.01.2021): 2744–56. http://dx.doi.org/10.1007/s10854-020-05007-w.
Pełny tekst źródłaKeerthana, S. P., R. Yuvakkumar, P. Senthil Kumar, G. Ravi i Dhayalan Velauthapillai. "Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation". Environmental Research 211 (sierpień 2022): 112964. http://dx.doi.org/10.1016/j.envres.2022.112964.
Pełny tekst źródłaKulbakin, I. V., S. V. Fedorov i V. V. Belousov. "Features of Oxygen Transfer in Cu2V2O7 – 20 wt% CuV2O6 Molten Oxide Membrane". Journal of The Electrochemical Society 165, nr 13 (2018): H861—H865. http://dx.doi.org/10.1149/2.0831813jes.
Pełny tekst źródłaRuan, M. Y., Z. W. Ouyang, Y. C. Sun, Z. C. Xia, G. H. Rao i H. S. Chen. "Examining Magnetic Models and Anisotropies in β-Cu2V2O7 by High-Frequency ESR". Applied Magnetic Resonance 48, nr 5 (29.03.2017): 423–33. http://dx.doi.org/10.1007/s00723-017-0871-3.
Pełny tekst źródłaKrasnenko, T. I., M. V. Rotermel’, S. A. Petrova, R. G. Zakharov, O. V. Sivtsova i A. N. Chvanova. "Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting". Russian Journal of Inorganic Chemistry 53, nr 10 (październik 2008): 1641–47. http://dx.doi.org/10.1134/s0036023608100203.
Pełny tekst źródłaWang, L., J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo i R. Klingeler. "Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7". New Journal of Physics 20, nr 6 (25.06.2018): 063045. http://dx.doi.org/10.1088/1367-2630/aac9dc.
Pełny tekst źródłaChattopadhyay, Bidisa, Md A. Ahmed, S. Bandyopadhyay, R. Singha i P. Mandal. "Magnetic ordering induced ferroelectricity in α-Cu2V2O7 studied through non-magnetic Zn doping". Journal of Applied Physics 121, nr 9 (7.03.2017): 094103. http://dx.doi.org/10.1063/1.4977859.
Pełny tekst źródłaGuo, Wenlong, Xin Lian, Yao Nie, Meichen Hu, Liming Wu, Huahui Gao i Ting Wang. "Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation". Materials Letters 258 (styczeń 2020): 126842. http://dx.doi.org/10.1016/j.matlet.2019.126842.
Pełny tekst źródłaSato, M., V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto i K. Takenaka. "Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion". AIP Advances 10, nr 7 (1.07.2020): 075207. http://dx.doi.org/10.1063/5.0010631.
Pełny tekst źródłaVali, Abbas, i Krishnan Rajeshwar. "Β-Cu2V2O7 Thin Films By a Hybrid Electrochemical/Thermal Route: Preparation and Characterization". ECS Meeting Abstracts MA2020-02, nr 15 (23.11.2020): 1423. http://dx.doi.org/10.1149/ma2020-02151423mtgabs.
Pełny tekst źródłaKim, Min-woo, Bhavana Joshi, Hyun Yoon, Tae Yoon Ohm, Karam Kim, Salem S. Al-Deyab i Sam S. Yoon. "Electrosprayed copper hexaoxodivanadate (CuV2O6) and pyrovanadate (Cu2V2O7) photoanodes for efficient solar water splitting". Journal of Alloys and Compounds 708 (czerwiec 2017): 444–50. http://dx.doi.org/10.1016/j.jallcom.2017.02.302.
Pełny tekst źródłaWang, Yong, Liyun Cao, Jianfeng Huang, Lingjiang Kou, Jiayin Li, Jianpeng Wu, Yijun Liu i Limin Pan. "Improved Li-Storage Properties of Cu2V2O7 Microflower by Constructing an in Situ CuO Coating". ACS Sustainable Chemistry & Engineering 7, nr 6 (17.02.2019): 6267–74. http://dx.doi.org/10.1021/acssuschemeng.8b06696.
Pełny tekst źródłaSong, Angang, Abdelkrim Chemseddine, Ibbi Yilmaz Ahmet, Peter Bogdanoff, Dennis Friedrich, Fatwa F. Abdi, Sean P. Berglund i Roel van de Krol. "Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation". Chemistry of Materials 32, nr 6 (2.03.2020): 2408–19. http://dx.doi.org/10.1021/acs.chemmater.9b04909.
Pełny tekst źródłaGuo, Wenlong, William D. Chemelewski, Oluwaniyi Mabayoje, Peng Xiao, Yunhuai Zhang i C. Buddie Mullins. "Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation". Journal of Physical Chemistry C 119, nr 49 (30.11.2015): 27220–27. http://dx.doi.org/10.1021/acs.jpcc.5b07219.
Pełny tekst źródłaIlic, D., i D. Neumann. "Characterization of Cu2V2O7 as cathode material for lithium cells by X-ray and photoelectron spectroscopy". Journal of Power Sources 44, nr 1-3 (kwiecień 1993): 589–93. http://dx.doi.org/10.1016/0378-7753(93)80207-6.
Pełny tekst źródłaNinova, Silviya, Michal Strach, Raffaella Buonsanti i Ulrich Aschauer. "Suitability of Cu-substituted β-Mn2V2O7 and Mn-substituted β-Cu2V2O7 for photocatalytic water-splitting". Journal of Chemical Physics 153, nr 8 (28.08.2020): 084704. http://dx.doi.org/10.1063/5.0019306.
Pełny tekst źródłaGadiyar, Chethana, Michal Strach, Pascal Schouwink, Anna Loiudice i Raffaella Buonsanti. "Chemical transformations at the nanoscale: nanocrystal-seeded synthesis of β-Cu2V2O7 with enhanced photoconversion efficiencies". Chemical Science 9, nr 25 (2018): 5658–65. http://dx.doi.org/10.1039/c8sc01314d.
Pełny tekst źródłaMachida, Masato, Takahiro Kawada, Hiroaki Yamashita i Tonami Tajiri. "Role of Oxygen Vacancies in Catalytic SO3 Decomposition over Cu2V2O7 in Solar Thermochemical Water Splitting Cycles". Journal of Physical Chemistry C 117, nr 50 (5.12.2013): 26710–15. http://dx.doi.org/10.1021/jp410431a.
Pełny tekst źródłaThanh Truc, Nguyen Thi, Nguyen Thi Hanh, Minh Viet Nguyen, Nguyen Thi Phuong Le Chi, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha, Do Quang Trung i Thanh-Dong Pham. "Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels". Applied Surface Science 457 (listopad 2018): 968–74. http://dx.doi.org/10.1016/j.apsusc.2018.07.034.
Pełny tekst źródłaKalal, Sangeeta, Arpita Pandey, Rakshit Ameta, Pinki B. Punjabi i Alexandra Martha Zoya Slawin. "Heterogeneous photo-Fenton-like catalysts Cu2V2O7 and Cr2V4O13 for an efficient removal of azo dye in water". Cogent Chemistry 2, nr 1 (22.03.2016): 1143344. http://dx.doi.org/10.1080/23312009.2016.1143344.
Pełny tekst źródłaGuo, Wenlong, i Xin Lian. "Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7". Catalysis Science & Technology 10, nr 15 (2020): 5129–35. http://dx.doi.org/10.1039/d0cy00959h.
Pełny tekst źródłaScarongella, Mariateresa, Chethana Gadiyar, Michal Strach, Luca Rimoldi, Anna Loiudice i Raffaella Buonsanti. "Assembly of β-Cu2V2O7/WO3 heterostructured nanocomposites and the impact of their composition on structure and photoelectrochemical properties". Journal of Materials Chemistry C 6, nr 44 (2018): 12062–69. http://dx.doi.org/10.1039/c8tc02888e.
Pełny tekst źródłaWang, Yong, Liyun Cao, Jianfeng Huang, Jing Lu, Boye Zhang, Guojuan Hai i Na Jia. "Enhanced cyclic performance of Cu2V2O7/ reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery". Journal of Alloys and Compounds 724 (listopad 2017): 421–26. http://dx.doi.org/10.1016/j.jallcom.2017.07.070.
Pełny tekst źródłaPaul, Arijita, i Siddhartha Sankar Dhar. "Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol". Journal of Solid State Chemistry 290 (październik 2020): 121563. http://dx.doi.org/10.1016/j.jssc.2020.121563.
Pełny tekst źródłaKumar, Amit, Sunil Kumar Sharma, Gaurav Sharma, Changsheng Guo, Dai-Viet N. Vo, Jibran Iqbal, Mu Naushad i Florian J. Stadler. "Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer". Journal of Hazardous Materials 402 (styczeń 2021): 123790. http://dx.doi.org/10.1016/j.jhazmat.2020.123790.
Pełny tekst źródła