Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Cu2SnS3 Films.

Artykuły w czasopismach na temat „Cu2SnS3 Films”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cu2SnS3 Films”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Reddy, Tippasani Srinivasa, i M. C. Santhosh Kumar. "Influence of Substrate Temperature on Structural and Optical Properties of Co-Evaporated Cu<sub>2</sub>SnS<sub>3</sub>/ITO Thin Films". Materials Science Forum 1048 (4.01.2022): 189–97. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.189.

Pełny tekst źródła
Streszczenie:
In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.
Style APA, Harvard, Vancouver, ISO itp.
2

Dias, Sandra, i S. B. Krupanidhi. "Temperature dependent electrical behaviour of Cu2SnS3 films". AIP Advances 4, nr 3 (marzec 2014): 037121. http://dx.doi.org/10.1063/1.4869639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kuku, Titilayo A., i Olaosebikan A. Fakolujo. "Photovoltaic characteristics of thin films of Cu2SnS3". Solar Energy Materials 16, nr 1-3 (sierpień 1987): 199–204. http://dx.doi.org/10.1016/0165-1633(87)90019-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Berg, Dominik M., Rabie Djemour, Levent Gütay, Susanne Siebentritt, Phillip J. Dale, Xavier Fontane, Victor Izquierdo-Roca i Alejandro Pérez-Rodriguez. "Raman analysis of monoclinic Cu2SnS3 thin films". Applied Physics Letters 100, nr 19 (7.05.2012): 192103. http://dx.doi.org/10.1063/1.4712623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ghediya, Prashant R., Tapas K. Chaudhuri, Vidur Raj, Dhaval Vankhade, Hark Hoe Tan i Chennupati Jagadish. "Electrical Properties of Compact Drop-Casted Cu2SnS3 Films". Journal of Electronic Materials 49, nr 11 (14.08.2020): 6403–9. http://dx.doi.org/10.1007/s11664-020-08380-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bayazıt, Tuğba, Mehmet Ali Olgar, Tayfur Küçükömeroğlu, Emin Bacaksız i Murat Tomakin. "Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)3 (CTSSe) thin films using dip-coated Cu–Sn precursor". Journal of Materials Science: Materials in Electronics 30, nr 13 (3.06.2019): 12612–18. http://dx.doi.org/10.1007/s10854-019-01622-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bouaziz, M., M. Amlouk i S. Belgacem. "Structural and optical properties of Cu2SnS3 sprayed thin films". Thin Solid Films 517, nr 7 (luty 2009): 2527–30. http://dx.doi.org/10.1016/j.tsf.2008.11.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Naji, Iqbal S. "Impact of thickness and heat treatment on some physical properties of thin Cu2SnS3 films". Iraqi Journal of Physics (IJP) 14, nr 30 (3.02.2019): 120–28. http://dx.doi.org/10.30723/ijp.v14i30.207.

Pełny tekst źródła
Streszczenie:
Copper tin sulfide (Cu2SnS3) thin films have been grown on glasssubstrate with different thicknesses (500, 750 and 1000) nm by flashthermal evaporation method after prepare its alloy from theirelements with high purity. The as-deposited films were annealed at473 K for 1h. Compositional analysis was done using Energydispersive spectroscopy (EDS). The microstructure of CTS powderexamined by SEM and found that the large crystal grains are shownclearly in images. XRD investigation revealed that the alloy waspolycrystalline nature and has cubic structure with preferredorientation along (111) plane, while as deposited films of differentthickness have amorphous structure and converted to polycrystallinewith annealing temperature for high thickness. AFM measurementsshowed that the grain size of the films was increasing by annealing.The ultraviolet- visible absorption spectrum measurement indicatedthat the films have a direct energy band gap. Eg decrease withthickness and increase with annealing.
Style APA, Harvard, Vancouver, ISO itp.
9

Tiwari, Devendra, Tristan Koehler, Reiner Klenk i David J. Fermin. "Solution processed single-phase Cu2SnS3 films: structure and photovoltaic performance". Sustainable Energy & Fuels 1, nr 4 (2017): 899–906. http://dx.doi.org/10.1039/c7se00150a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zaretskaya, E. P., V. F. Gremenok, V. A. Ivanov, A. V. Stanchik, O. M. Borodavchenko, D. V. Zhyhulin, S. Özçelik i N. Akçay. "Phase Composition, Microstructure, and Optical Properties of Cu2SnS3 Thin Films". Journal of Applied Spectroscopy 87, nr 3 (lipiec 2020): 488–94. http://dx.doi.org/10.1007/s10812-020-01028-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Puzer, D. B., I. Nkrumah, F. K. Ampong, M. Paal, E. A. Botchway, R. K. Nkum i F. Boakye. "Copper-tin-sulphide (CTS) thin films, obtained by a two-electrode electrochemical deposition of metal precursors, followed by soft annealing and sulfurization". Chalcogenide Letters 18, nr 8 (sierpień 2021): 481–91. http://dx.doi.org/10.15251/cl.2021.188.481.

Pełny tekst źródła
Streszczenie:
CTS thin films have been prepared by soft annealing and sulfurization of electrodeposited Cu-Sn precursors. The stacked elemental layer approach was used to deposit the elemental precursors on an ITO substrate using a two-electrode electrochemical cell, with graphite plate as the counter electrode. The stacked metallic layer was then soft annealed in an Argon atmosphere at 350 °C and subsequently, sulfurized at different temperatures of 500 0C and 550 0C for one hour to form CTS films. The films have been characterized by a variety of techniques. From the XRD analysis, the CTS thin films obtained at a sulfurization temperature of 500 oC showed the coexistence of SnS, Cubic-Cu2Sn3S7 and hexagonal-Cu4S16Sn7 phases. The majority phase was clearly identified as cubic-Cu2SnS3, with (111) preferential orientation. For the films sulfurized at 550 oC, the pattern of prominent peaks showed the presence of the Hexagonal-Cu4S16Sn7 phase of CTS with preferred orientation along the (202) plane. There were relatively fewer low intensity peaks assigned to the secondary phases, indicating an improvement in CTS purity at the higher sulfurization temperature. SEM images of the CTS films show a compact, homogenous morphology, with densely packed grains. The films sulfurized at 550 oC, showed better homogeneity. EDAX spectra of the sulfurized alloy precursors were consistent with the formation of CTS. The film obtained at the lower sulfurization temperature had two band gaps as a consequence of the mixture of phases present in the sample. The film obtained at the higher sulfurization temperature had an energy band gap of 1.5 eV, which falls within the range of values reported in literature. The present work provides a new synthesis route for the electrodeposition of CTS thin film for device applications.
Style APA, Harvard, Vancouver, ISO itp.
12

Rahaman, Sabina, M. Anantha Sunil, Monoj Kumar Singha i Kaustab Ghosh. "Studies of ultrasonically sprayed Cu2SnS3 thin films by varying Sn concentration". Materials Today: Proceedings 43 (2021): 3938–41. http://dx.doi.org/10.1016/j.matpr.2021.02.657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Dias, Sandra, i S. B. Krupanidhi. "Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications". AIP Advances 6, nr 2 (luty 2016): 025217. http://dx.doi.org/10.1063/1.4942775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Ghediya, Prashant R., Tapas K. Chaudhuri, Vidur Raj, Dipankar Chugh, Kaushal Vora, Li Li, Hark Hoe Tan i Chennupati Jagadish. "Direct-coated Cu2SnS3 films from molecular solution inks for solar photovoltaics". Materials Science in Semiconductor Processing 88 (grudzień 2018): 120–26. http://dx.doi.org/10.1016/j.mssp.2018.07.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bouaziz, M., J. Ouerfelli, S. K. Srivastava, J. C. Bernède i M. Amlouk. "Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere". Vacuum 85, nr 8 (luty 2011): 783–86. http://dx.doi.org/10.1016/j.vacuum.2010.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Xu, Bin, Yun Zhao, Aimin Sun, Yan Li, Wen Li i Xiuxun Han. "Direct solution coating of pure-phase Cu2SnS3 thin films without sulfurization". Journal of Materials Science: Materials in Electronics 28, nr 4 (8.11.2016): 3481–86. http://dx.doi.org/10.1007/s10854-016-5946-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Patel, Biren, Indrajit Mukhopadhyay i Abhijit Ray. "Inexpensive Cu2SnS3 grown by room-temperature aqueous bath electrodeposition for thin film solar cells". International Journal of Modern Physics B 32, nr 19 (18.07.2018): 1840071. http://dx.doi.org/10.1142/s0217979218400714.

Pełny tekst źródła
Streszczenie:
We report the growth of Cu2SnS3 (CTS) thin films on F-doped SnO2 (FTO) glass substrates at room-temperature by low-cost electrodeposition technique using an aqueous medium without the evolution of hydrogen. Electrolyte concentration and deposition potential were optimized under the limits of water hydrolysis. As-deposited films are post-annealed in the presence of the sulphur flakes to establish the stoichiometry. The annealed films were found to contain high phase purity and favorable optical properties to be useful for the photovoltaic applications. Optical data reveal that the CTS films have direct optical bandgap of 1.25 eV with an absorption coefficient of the order of 104 cm[Formula: see text]. A photovoltaic cell architecture of Glass/FTO (back contact)/CTS/CdS/Al:ZnO/Al (front contact) exhibited an open circuit voltage of 28 mV, a short circuit current density of 8.4 [Formula: see text]A/cm2 and the fill factor of 25%. The absorber thickness optimization and the use of Mo-coated glass as a back contact improve the solar cell parameters. A further study in this aspect is under way.
Style APA, Harvard, Vancouver, ISO itp.
18

Guo, Yuxiao, Xingtian Yin, Yawei Yang i Wenxiu Que. "Construction of ZnO/Cu2SnS3 nanorod array films for enhanced photoelectrochemical and photocatalytic activity". RSC Advances 6, nr 106 (2016): 104041–48. http://dx.doi.org/10.1039/c6ra22674d.

Pełny tekst źródła
Streszczenie:
ZnO nanorod array films grown on fluorine-doped tin oxide glass substrates were homogeneously coated with visible light responsive Cu2SnS3 nanoparticles through a controllable one-step electrodeposition process.
Style APA, Harvard, Vancouver, ISO itp.
19

Chalapathi, U., B. Poornaprakash i Si-Hyun Park. "Antimony induced crystal growth for large-grained Cu2SnS3 thin films for photovoltaics". Journal of Power Sources 426 (czerwiec 2019): 84–92. http://dx.doi.org/10.1016/j.jpowsour.2019.04.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hadi, Zaid L., Mohammed Sh Essa i Bahaa T. Chiad. "Ternary Cu2SnS3 Thin Films Deposited by Fully Controlled System of Spray Pyrolysis". Journal of Physics: Conference Series 1234 (lipiec 2019): 012041. http://dx.doi.org/10.1088/1742-6596/1234/1/012041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Tiwari, Devendra, Tapas K. Chaudhuri, T. Shripathi, U. Deshpande i V. G. Sathe. "Structural and optical properties of layer-by-layer solution deposited Cu2SnS3 films". Journal of Materials Science: Materials in Electronics 25, nr 9 (11.06.2014): 3687–94. http://dx.doi.org/10.1007/s10854-014-2076-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Minnam Reddy, Vasudeva Reddy, Mohan Reddy Pallavolu, Phaneendra Reddy Guddeti, Sreedevi Gedi, Kishore Kumar Yarragudi Bathal Reddy, Babu Pejjai, Woo Kyoung Kim, Thulasi Ramakrishna Reddy Kotte i Chinho Park. "Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance". Journal of Industrial and Engineering Chemistry 76 (sierpień 2019): 39–74. http://dx.doi.org/10.1016/j.jiec.2019.03.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Olgar, M. A., B. M. Başol, M. Tomakin i E. Bacaksız. "Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere". Journal of Materials Science: Materials in Electronics 32, nr 8 (15.03.2021): 10018–27. http://dx.doi.org/10.1007/s10854-021-05660-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Raadik, T., M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolt Ettlinger, O. Hansen i J. Schou. "Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition". Applied Physics Letters 110, nr 26 (26.06.2017): 261105. http://dx.doi.org/10.1063/1.4990657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Chalapathi, U., B. Poornaprakash i Si-Hyun Park. "Growth and properties of co-evaporated Cu2SnS3 thin films for solar cell applications". Vacuum 131 (wrzesień 2016): 22–27. http://dx.doi.org/10.1016/j.vacuum.2016.05.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Srinivasa Reddy, T., R. Amiruddin i M. C. Santhosh Kumar. "Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application". Solar Energy Materials and Solar Cells 143 (grudzień 2015): 128–34. http://dx.doi.org/10.1016/j.solmat.2015.06.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ashebir, Getinet Y., Chao Dong, Junwei Chen, Wangwei Chen, Rong Liu, Qiuyuan Zhao, Zhiyang Wan i Mingtai Wang. "Solution-processed extremely thin films of Cu2SnS3 nanoparticles for planar heterojunction solar cells". Journal of Physics D: Applied Physics 53, nr 11 (2.01.2020): 115101. http://dx.doi.org/10.1088/1361-6463/ab5ee5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Magdy, Wafaa, Ayaka Kanai, F. A. Mahmoud, E. T. El Shenawy, S. A. Khairy, H. H. Hassan i Mutsumi Sugiyama. "Effect of rapid thermal annealing on sprayed Cu2SnS3 thin films for solar-cell application". Japanese Journal of Applied Physics 59, nr 10 (25.09.2020): 105503. http://dx.doi.org/10.35848/1347-4065/abb7f1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kanai, Ayaka, i Mutsumi Sugiyama. "Emission properties of intrinsic and extrinsic defects in Cu2SnS3 thin films and solar cells". Japanese Journal of Applied Physics 60, nr 1 (18.12.2020): 015504. http://dx.doi.org/10.35848/1347-4065/abcf06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Orletskii, I. G., M. N. Solovan, F. Pinna, G. Cicero, P. D. Mar’yanchuk, E. V. Maistruk i E. Tresso. "Structural, optical, and electrical properties of Cu2SnS3 thin films produced by sol gel method". Physics of the Solid State 59, nr 4 (kwiecień 2017): 801–7. http://dx.doi.org/10.1134/s1063783417040163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tanaka, Kunihiko, Mao Kowata, Fumitaka Yoshihisa, Shinya Imai i Wataru Yamazaki. "Preparation of monoclinic Cu2SnS3 thin films by fine channel mist chemical vapor deposition method". Thin Solid Films 697 (marzec 2020): 137820. http://dx.doi.org/10.1016/j.tsf.2020.137820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Guddeti, Phaneendra Reddy, Sreedevi Gedi i K. T. Ramakrishna Reddy. "Sulfurization temperature dependent physical properties of Cu2SnS3 films grown by a two-stage process". Materials Science in Semiconductor Processing 86 (listopad 2018): 164–72. http://dx.doi.org/10.1016/j.mssp.2018.06.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Shelke, Harshad D., Abhishek C. Lokhande, Vanita S. Raut, Amar M. Patil, Jin H. Kim i Chandrakant D. Lokhande. "Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness". Journal of Materials Science: Materials in Electronics 28, nr 11 (19.03.2017): 7912–21. http://dx.doi.org/10.1007/s10854-017-6492-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wang, Yaguang, Jianmin Li, Cong Xue, Yan Zhang, Guoshun Jiang, Weifeng Liu i Changfei Zhu. "Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique". Electronic Materials Letters 13, nr 6 (24.06.2017): 478–82. http://dx.doi.org/10.1007/s13391-017-6244-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zhang, Haitao, Meng Xie, Shu Zhang i Yong Xiang. "Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors". Journal of Alloys and Compounds 602 (lipiec 2014): 199–203. http://dx.doi.org/10.1016/j.jallcom.2014.03.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

XU Xin, 徐. 信., 王书荣 WANG Shu-rong, 陆熠磊 LU Yi-lei, 杨. 帅. YANG Shuai, 李耀斌 LI Yao-bin, 唐. 臻. TANG Zhen i 杨洪斌 YANG Hong-bin. "Fabrication of Cu2SnS3 Thin Films Solar Cells by Magnetron Sputtering Sn and CuS Targets". Chinese Journal of Luminescence 39, nr 11 (2018): 1557–64. http://dx.doi.org/10.3788/fgxb20183911.1557.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Shelke, H. D., A. C. Lokhande, J. H. Kim i C. D. Lokhande. "Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method". Journal of Colloid and Interface Science 506 (listopad 2017): 144–53. http://dx.doi.org/10.1016/j.jcis.2017.07.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ruan, Chengzhi, Jiahua Tao, Chengyun Zhu i Chen Chen. "Effect of potassium doping for ultrasonic sprayed Cu2SnS3 thin films for solar cell application". Journal of Materials Science: Materials in Electronics 29, nr 15 (6.06.2018): 12824–29. http://dx.doi.org/10.1007/s10854-018-9401-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kahraman, Süleyman, Mateja Podlogar, Slavko Bernik i Hüsnü Salih Güder. "Facile Synthesis of Cu2ZnSnS4 Photovoltaic Absorber Thin Films via Sulfurization of Cu2SnS3/ZnS Layers". Metallurgical and Materials Transactions A 45, nr 4 (14.01.2014): 2326–34. http://dx.doi.org/10.1007/s11661-013-2164-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Igarashi, Yuki, Takuya Tomono, Kunihiko Tanaka i Katsuhiko Moriya. "Preparation of Cu2SnS3 thin film by sol-gel dip coating". Japanese Journal of Applied Physics 61, SB (17.01.2022): SB1002. http://dx.doi.org/10.35848/1347-4065/ac2e7b.

Pełny tekst źródła
Streszczenie:
Abstract Cu2SnS3 (CTS), an environmentally friendly semiconductor material that has little impact on the human body, was developed as an alternative material to silicon-based solar cells, which are currently the mainstream product in the solar cell market. In this study, by adopting the sol-gel dip coating method, a CTS thin film was produced at low cost without using a vacuum process for use as a solar cell light absorption layer. CTS thin films were prepared while varying the annealing temperature and the amount of α-cyclodextrin added, and the results were compared by different evaluation methods. In addition, the samples to which α-cyclodextrin was added showed peaks due to CTS at (112) and (220) in all the samples. The crystallinity was not found to depend on the amount of α-cyclodextrin added.
Style APA, Harvard, Vancouver, ISO itp.
41

Nguyen, Hong T. T., V. S. Zakhvalinskii, Thao T. Pham, N. T. Dang, Tuan V. Vu, E. A. Pilyuk i G. V. Rodriguez. "Structural properties and variable-range hopping conductivity of Cu2SnS3". Materials Research Express 6, nr 5 (27.02.2019): 055915. http://dx.doi.org/10.1088/2053-1591/ab0775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sozak, Işil Merve Songür, Uğur Yorulmaz, Ferhunde Atay i Idris Akyüz. "The effect of sulphur amount in sulphurization stage on secondary phases in Cu2SnS3(CTS) films". Current Applied Physics 26 (czerwiec 2021): 64–71. http://dx.doi.org/10.1016/j.cap.2021.03.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kim, Yongshin, In-Hwan Choi i Soon Yong Park. "Characterization of Cu2SnS3 thin films prepared by sulfurization of co-evaporated Cu–SnS precursor layers". Thin Solid Films 666 (listopad 2018): 61–65. http://dx.doi.org/10.1016/j.tsf.2018.09.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Jayasree, Y., U. Chalapathi i V. Sundara Raja. "Growth of Cu2SnS3 thin films by a two-stage process: structural, microstructural and optical properties". Journal of Materials Science: Materials in Electronics 26, nr 8 (19.05.2015): 5946–51. http://dx.doi.org/10.1007/s10854-015-3166-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Mohamed, A. M. A., Rasha Afify, Walaa A. E. Omar, Paul C. Okonkwo i M. Boshta. "Influence of deposition temperature and time on the optical behavior of sprayed Cu2SnS3 thin films". Emergent Materials 3, nr 1 (luty 2020): 15–24. http://dx.doi.org/10.1007/s42247-020-00075-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wang, Weihuang, Huiling Cai, Guilin Chen, Binwen Chen, Liquan Yao, Jiabin Dong, Xuxi Yu, Shuiyuan Chen i Zhigao Huang. "Preparation of Sn loss-free Cu2SnS3 thin films by an oxide route for solar cell". Journal of Alloys and Compounds 742 (kwiecień 2018): 860–67. http://dx.doi.org/10.1016/j.jallcom.2018.01.391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Heidariramsheh, Maryam, Sevan Gharabeiki, Seyed Mohammad Mahdavi i Nima Taghavinia. "Optoelectrical and structural characterization of Cu2SnS3 thin films grown via spray pyrolysis using stable molecular ink". Solar Energy 224 (sierpień 2021): 218–29. http://dx.doi.org/10.1016/j.solener.2021.05.088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Jia, Zhen, Qinmiao Chen, Jin Chen, Tingting Wang, Zhenqing Li i Xiaoming Dou. "The photovoltaic properties of novel narrow band gap Cu2SnS3 films prepared by a spray pyrolysis method". RSC Advances 5, nr 37 (2015): 28885–91. http://dx.doi.org/10.1039/c5ra01610j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Patel, Biren, Ranjan K. Pati, Indrajit Mukhopadhyay i Abhijit Ray. "Effect of vacuum and sulphur annealing on the structural properties of spray deposited Cu2SnS3 thin films". Vacuum 158 (grudzień 2018): 263–70. http://dx.doi.org/10.1016/j.vacuum.2018.10.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chalapathi, U., Y. Jayasree, S. Uthanna i V. Sundara Raja. "Effect of annealing on the structural, microstructural and optical properties of co-evaporated Cu2SnS3 thin films". Vacuum 117 (lipiec 2015): 121–26. http://dx.doi.org/10.1016/j.vacuum.2015.04.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii