Gotowa bibliografia na temat „Cu based cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cu based cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cu based cells"
Chung, Yong-Duck, Dae-Hyung Cho, Won-Seok Han, Nae-Man Park, Kyu-Seok Lee i Jeha Kim. "Incorporation of Cu in Cu(In,Ga)Se2-based Thin-film Solar Cells". Journal of the Korean Physical Society 57, nr 6(1) (15.12.2010): 1826–30. http://dx.doi.org/10.3938/jkps.57.1826.
Pełny tekst źródłaSimchi, Hamed, Brian E. McCandless, T. Meng, Jonathan H. Boyle i William N. Shafarman. "MoO3 back contact for CuInSe2-based thin film solar cells". MRS Proceedings 1538 (2013): 173–78. http://dx.doi.org/10.1557/opl.2013.1018.
Pełny tekst źródłaTaskesen, Teoman, Devendra Pareek, David Nowak, Willi Kogler, Thomas Schnabel, Erik Ahlswede i Levent Gütay. "Potential of CZTSe Solar Cells Fabricated by an Alloy-Based Processing Strategy". Zeitschrift für Naturforschung A 74, nr 8 (27.08.2019): 673–82. http://dx.doi.org/10.1515/zna-2019-0136.
Pełny tekst źródłaSon, Hyung Jin, Kuen Kee Hong, Byeong‐Kwon Ju i Sung Hyun Kim. "Oxidation‐resistant Cu‐based metallisation for Si solar cells". Energy Science & Engineering 10, nr 4 (11.03.2022): 1264–71. http://dx.doi.org/10.1002/ese3.1082.
Pełny tekst źródłaHorzel, Jorg T., Yuan Shengzhao, Norbert Bay, Michael Passig, Damian Pysch, Holger Kuhnlein, Hartmut Nussbaumer i Pierre Verlinden. "Industrial Si Solar Cells With Cu-Based Plated Contacts". IEEE Journal of Photovoltaics 5, nr 6 (listopad 2015): 1595–600. http://dx.doi.org/10.1109/jphotov.2015.2478067.
Pełny tekst źródłaNaghavi, N., F. Mollica, J. Goffard, J. Posada, A. Duchatelet, M. Jubault, F. Donsanti i in. "Ultrathin Cu(In,Ga)Se 2 based solar cells". Thin Solid Films 633 (lipiec 2017): 55–60. http://dx.doi.org/10.1016/j.tsf.2016.11.029.
Pełny tekst źródłaErgen, Onur, Ecem Celik, Ahmet Hamdi Unal i Mert Yusuf Erdolu. "Screen Engineered Field Effect Cu₂O Based Solar Cells". IEEE Electron Device Letters 41, nr 7 (lipiec 2020): 1138–40. http://dx.doi.org/10.1109/led.2020.2995924.
Pełny tekst źródłaCheng, Zhao, Xilang Jin, Yinggang Liu, Lei Zheng i Hao He. "An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells". Molecules 28, nr 9 (26.04.2023): 3725. http://dx.doi.org/10.3390/molecules28093725.
Pełny tekst źródłaRaval, Mehul C., i Chetan S. Solanki. "Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells". Journal of Solar Energy 2013 (21.11.2013): 1–20. http://dx.doi.org/10.1155/2013/183812.
Pełny tekst źródłaPetruzzelli, Raffaella, i Roman S. Polishchuk. "Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs". Cells 8, nr 9 (13.09.2019): 1080. http://dx.doi.org/10.3390/cells8091080.
Pełny tekst źródłaRozprawy doktorskie na temat "Cu based cells"
Fairbrother, Andrew. "Development of Cu(2)ZnSn(S,Se)(4) based solar cells". Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145615.
Pełny tekst źródłaEn los últimos años ha habido un rápido desarrollo en las tecnologías de celdas solares basadas en capa delgada, siendo hasta el momento los dispositivos basados en calcopiritas (Cu(In,Ga)Se2) los que han mostrado una mayor eficiencia de conversión fotovoltaica a escala de laboratorio. Sin embargo, y a pesar de tan prometedores resultados, existe una preocupación sobre la viabilidad a medio y largo término de estos materiales debido a la presencia en su composición de elementos relativamente escasos en la corteza terrestre, como son el In y el Ga. Esto ha llevado al desarrollo de tecnologías fotovoltaicas basadas en kesterita (Cu2ZnSn(S,Se)4), que es especialmente prometedora dada su gran similitud con la calcopirita. En este compuesto, el indio y el galio son reemplazados por elementos más abundantes como son el cinc y el estaño. Los valores de eficiencia de los dispositivos aún están por debajo de los del Cu(In,Ga)Se2, pero nuevas investigaciones y técnicas de desarrollo han llevado a importantes avances en los últimos años. A día de hoy, tanto los parámetros de fabricación como la estructura de los dispositivos basados en kesterita han seguido un camino prácticamente idéntico al de las tecnologías basadas en calcopiritas. El objetivo de esta tesis es el de profundizar en el desarrollo de las tecnologías basadas en kesterita, lo que cubre algunos de los retos básicos relacionados con ellas, como son la formación e identificación de fases secundarias o la optimización de las áreas de contacto frontal y posterior. Se ha puesto especial énfasis en la deposición y los procesos térmicos implicados en el crecimiento de este compuesto, y en ver cómo afectan a la posible formación de las fases secundarias y las propiedades del dispositivo. La tesis en sí está estructurada a partir de los diversos estudios publicados en revistas científicas. Dichos estudios incluyen una caracterización detallada por espectroscopia de dispersión Raman, difracción de rayos X, microscopia electrónica de barrido, y otras técnicas. Los puntos principales de este trabajo son: el desarrollo de un ataque químico selectivo para la eliminación del ZnS (una fase secundaria comúnmente presente en este sistema), con la consecuente mejora de las características del dispositivo; la elaboración de un método de sulfo-selenización para la formación de Cu2ZnSn(S,Se)4 a partir de precursores metálicos; y la resolución de cómo influyen los parámetros de los diferentes procesos térmicos en la formación y distribución de las fases.
Gouillart, Louis. "Development of ultrathin Cu(In,Ga)Se ₂ –based solar cells with reflective back contacts". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS007.
Pełny tekst źródłaReducing the absorber thickness of thin-film photovoltaic devices is a promising way to improve their industrial competitiveness, thanks to a lower material usage and an increased throughput. It can also increase their efficiency due to a shorter pathway for the separation of photogenerated charge carriers. Still, the efficiency of ultrathin Cu(In,Ga)Se ₂ -based (CIGS) solar cells , which have an absorber thickness ≤500 nm that is approximately 5 times thinner than standard devices, is limited by two phenomena: the non-radiative recombination of charge carriers at the back contact and the incomplete absorption of the incident light. Several strategies were studied in order to mitigate those losses. First, the composition of ultrathin CIGS layers was optimized to create a grading of the semiconductor’s conduction band minimum. The resulting electric field contributes to a better charge carrier separation and a lower back contact recombination rate. The incorporation of silver in the CIGS composition greatly improved the performances of ultrathin cells, leading to an efficiency of 14.9% (540 nm of ACIGS, without antireflection coating), close to the current record of 15.2% (490 nm of CIGS, with antireflection coating). Besides, the addition of an alumina passivation layer at the interface between CIGS (470 nm) and Mo was also investigated, and resulted in an improvement of the open-circuit voltage of 55 mV. Second, a novel architecture of reflective back contacts was developed. It consists of a silver mirror that is encapsulated with layers of transparent conductive oxides. Based on a transmission electron microscopy study, this back contact was shown to be compatible with the co-evaporation of CIGS at 500°C or more. Thanks to a high reflectivity and an ohmic contact with CIGS, it led to an increase of the efficiency from 12.5% to 13.5% and of the short-circuit current from 26.2 mA/cm² to 28.9 mA/cm² as compared to cells with a standard molybdenum back contact. This reflective back contact paves the way toward higher photovoltaic efficiencies as well as novel strategies for further light trapping
Khanal, Rajendra R. "Carbon Single Wall Nanotubes: Low Barrier, Cu- Free Back Contact to CdTe Based Solar Cells". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396625969.
Pełny tekst źródłaPaire, Myriam. "Highly efficient solar cells in low dimensionality based on Cu(In,Ga)Se2 chalcopyrite materials". Paris 6, 2012. http://www.theses.fr/2012PA066439.
Pełny tekst źródłaIn this thesis we explored the potential of thin film microscale concentrator solar cells. The aim of the study is to develop a highly efficient photovoltaic technology, based on large-area processes for high throughput, and which is raw-material thrifty to meet the constraints of terawatt development. The miniaturization of thin film solar cells leads to a low resistive architecture, with easy thermal management, which is therefore adapted to the concentrating regime. The scale effects are studied from an analytical and numerical point of view. Prototype Cu(In,Ga)Se2 solar cells are fabricated with help of photolithography techniques and tested to evaluate the performance of the microcells. A 5% absolute efficiency increase was measured, which led to a 21. 3% efficiency of a 50 µm diameter microcell at a concentration of ×475. The influence of the incident spectra is highlighted. The specific features of the high illumination regime are studied for the first time on Cu(In,Ga)Se2. The photoconductive behavior of Cu(In,Ga)Se2 is analyzed. The screening of the electric field in the Cu(In,Ga)Se2 heterojunction under high light fluxes is evidenced by simulation and may explain the influence of the illumination level on the collection efficiency observed experimentally. The possibility of an industrial application is tackled via the fabrication of mesa delineated microcells, which proves that the edge surface of the microcells have a low recombination velocity (< 4 103 cm/s). A bottom-up approach is studied via electrodeposition. This selective deposition technique enables the synthesis of CuInSe2 on microelectrodes
Mollica, Fabien. "Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative back-contacts". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066556/document.
Pełny tekst źródłaIn the past three years, record efficiency of Cu(In,Ga)Se2 (CIGS) based solar cells has improved from 20% up to 22.6%. These results show that CIGS absorber is ideal for thin-film solar cells, even if this technology could be more competitive with a lower manufacture cost. The fabrication of devices with thinner CIGS absorbers is a way to increase the throughput of a factory and to reduce material consumption. This PhD thesis aims to develop cells with a CIGS thickness below 500 nm instead of the conventional 2.0-2.5 µm. However, as reported in the literature, we observed a decrease in cell performance. We carefully analyzed this effect by the comparison between simulations and sample characterizations: it is attributed, on one hand, to a lack of light absorption in the CIGS layer and, on the other hand, to an increased impact of the back-contact (high recombination and low reflectivity). To resolve these problems, we demonstrated theoretically and experimentally that the use of an alternative back-contact, other than molybdenum, such as a transparent conducting oxide coupled with a light reflector, improves the cell efficiency. To achieve this result, an optimization of the CIGS deposition was necessary. Moreover, we proved that a porous oxide layer inserted between the CIGS and the back-contact limits the charge-carrier recombination and removes some parasitic resistance. Finally, an efficiency of 10.7% was achieved for a 480-nm-thick CIGS solar cell with a SnO2:F back-contact passivated with a porous Al2O3 layer
Wennerberg, Johan. "Design and Stability of Cu(In,Ga)Se2-Based Solar Cell Modules". Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1630.
Pełny tekst źródłaYu, Zhiqiang. "Transient Studies of Ni-, Cu-Based Electrocatalysts in CH4 Solid Oxide Fuel Cell". Akron, OH : University of Akron, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1194625466.
Pełny tekst źródła"December, 2007." Title from electronic dissertation title page (viewed 03/12/2008) Advisor, Steven S. C. Chuang; Committee members, Lu-Kwang Ju, Edward Evans, W. B. Arbuckle, Stephen Z. D. Cheng; Department Chair, Lu-Kwang Ju; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Platzer-Björkman, Charlotte. "Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar Cells". Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6263.
Pełny tekst źródłaJutteau, Sébastien. "Design, prototyping and characterization of micro-concentrated photovoltaic systems based on Cu(In,Ga) Se2 solar cells". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066666/document.
Pełny tekst źródłaIn this thesis, we studied the design, prototyping and characterization of micro-concentrated photovoltaic systems based on Cu(In,Ga)Se2 solar cells. The objective is to reduce the use of rare materials using the concentration of light, and benefit from the effect of miniaturization such as heat dissipation and lower resistive losses. First, the optical design of 1D and 2D concentrating systems based on spherical microlenses is presented. Using a ray-tracing software Zemax OpticStudio, we evaluated the best combination of elements, thickness and radii of curvature of the lenses, as well as the tolerances of fabrication and positioning of the system. An optical system of 1 mm thickness with a geometrical ratio of 100 and an angular tolerance of +/- 3.5° has been designed. Second, fabrication processes have been created and optimized to fabricate a 5x5 cm² prototypes with 2500 microcells. The best mini-module showed a concentration factor of 72x with an absolute increase of the efficiency of +1.6%. Third, numerical and experimental studies have been performed on concentrating systems based on Luminescent Solar Concentrators (LSC) and Compound Parabolic Concentrators (CPC). The LSC showed a low concentration factor and suffered from repeatability issues while the CPC is a very efficient solution but its specific geometry makes it difficult to fabricate at the micron scale. Finally, we developed a MATLAB code to estimate the producible energy of the designed systems, in order to evaluate the relevance of future technological choices that will be made
Platzer-Björkman, Charlotte. "Band alignment between ZnO-based and Cu(In,Ga)Se₂ thin films for high efficiency solar cells /". Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6263.
Pełny tekst źródłaKsiążki na temat "Cu based cells"
service), ScienceDirect (Online, red. Cu(InGa)Se2 based thin film solar cells. London: Academic, 2009.
Znajdź pełny tekst źródłaCu(InGa)Se2 Based Thin Film Solar Cells. Elsevier, 2010. http://dx.doi.org/10.1016/c2009-0-17190-8.
Pełny tekst źródłaKodigala, Subba Ramaiah. Cu(In1-XGax)Se2 Based Thin Film Solar Cells. Elsevier Science & Technology Books, 2011.
Znajdź pełny tekst źródłaWennerberg, Johan. Design and Stability of Cu(In,Ga)Se2-Based Solar Cell Modules. Uppsala Universitet, 2002.
Znajdź pełny tekst źródłaSkiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.
Pełny tekst źródłaCzęści książek na temat "Cu based cells"
Schock, H. W., B. Dimmler, H. Dittrich, J. Kimmerle i R. Menner. "Heterojunction Solar Cells Based on Cu(Ga, In) Se2 Chalcopyrite Thin Films". W Seventh E.C. Photovoltaic Solar Energy Conference, 465–69. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_82.
Pełny tekst źródłaRasel, Salman Rahman, K. A. Khan, Md Sayed Hossain, Shahinul Islam, M. Hazrat Ali i Rajada Khatun. "A Study on Zn/Cu-Based Pandan Leaf (Pandanus Amaryllifolius) Electrochemical Cell". W Lecture Notes in Electrical Engineering, 51–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0412-9_5.
Pełny tekst źródłaDimmler, B., H. Dittrich, R. Menner, H. W. Schock i W. H. Bloss. "Cu(Ga, In)Se2 BASED POLYCRYSTALLINE THIN FILM SOLAR CELLS". W Advances In Solar Energy Technology, 180–84. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50041-0.
Pełny tekst źródłaTchangnwa Nya, Fridolin, i Guy Maurel Dzifack Kenfack. "Thin-Film Solar Cells Performances Optimization: Case of Cu (In, Ga) Se2-ZnS". W Solar Cells [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93817.
Pełny tekst źródłaMaurya, Radheshyam, i Madhulika Namdeo. "Superoxide Dismutase: A Key Enzyme for the Survival of Intracellular Pathogens in Host". W Reactive Oxygen Species [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100322.
Pełny tekst źródłaDe Cock, Kevin M. "CDC in the Modern AIDS Era". W Dispatches from the AIDS Pandemic, 266—C20N32. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780197626528.003.0020.
Pełny tekst źródłaThakur, Mintu, i Kinkar Biswas. "Biological Importance of Some Functionalized Schiff Base-Metal Complexes". W Recent Trends and The Future of Antimicrobial Agents - Part 2, 101–23. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123975123010008.
Pełny tekst źródłaLee, Woo-Jung, i Yong-Duck Chung. "Ultrafast Carrier Dynamics at p-n Junction of Cu(In,Ga)Se2- Based Solar Cells Measured by Optical Pump Terahertz Probe Spectroscopy". W Terahertz Spectroscopy - A Cutting Edge Technology. InTech, 2017. http://dx.doi.org/10.5772/66350.
Pełny tekst źródłaBunker, Bruce C., i William H. Casey. "The Electrochemistry of Oxides". W The Aqueous Chemistry of Oxides. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780199384259.003.0018.
Pełny tekst źródłaJemmali, Mosbah, i Lotfi Bessais. "Effect of M Substitution on Structural, Magnetic and Magnetocaloric Properties of R2Fe17-x Mx (R = Gd, Nd; M = Co, Cu) Solid Solutions". W Magnetic Skyrmions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96299.
Pełny tekst źródłaStreszczenia konferencji na temat "Cu based cells"
Horzel, J., N. Bay, M. Passig, H. Kuhnlein, Yuan Shengzhao i Pierre Verlinden. "Industrial Si solar cells with Cu based plated contacts". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355650.
Pełny tekst źródłaGabor, Andrew M., John R. Tuttle, David S. Albin, Andrew L. Tennant, Miguel A. Contreras, Rommel Noufi i Allen M. Hermann. "High efficiency polycrystalline Cu(In,Ga)Se2-based solar cells". W The 12th NREL photovoltaic program review. AIP, 1994. http://dx.doi.org/10.1063/1.45732.
Pełny tekst źródłaLiu, Mengdi, Anastasia H. Soeriyadi, Ning Song, Pei-Chieh Hsiao, Udo Romer, Ned Ekins-Daukes i Alison Lennon. "Formation Mechanism of Cu-based Ohmic Contacts for GaAs Solar Cells". W 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300525.
Pełny tekst źródłaMarsen, Bjorn, Susanne Dorn, Richard Rocheleau, Eric Miller, Scott Morrison, Ronald Martin i Sylvain Marsillac. "Cu(In,Ga)Se2-Based Solar Cells on Flexible Insulating Substrates". W 3rd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5635.
Pełny tekst źródłaRocha, B. V., M. O. Silva, L. D. Pinto i P. L. Souza. "III-V solar cells transferred to flexible substrates based on Cu". W 2022 36th Symposium on Microelectronics Technology (SBMICRO). IEEE, 2022. http://dx.doi.org/10.1109/sbmicro55822.2022.9881024.
Pełny tekst źródłaLin, Chao-Han, Andrey Gunawan, Patrick E. Phelan, Daniel A. Buttry, Vladimiro Mujica, Robert A. Taylor i Ravi Prasher. "Optimization of Cell Configuration for Maximizing Performance of a Cu/Cu2+ Aqueous Thermogalvanic Cell". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88796.
Pełny tekst źródłaLiu, Fangfang, Yun Sun, Qing He i Zhiqiang Zhou. "Rapid thermal annealing on dS/Cu(In, Ga)Se2-based solar cells". W 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893634.
Pełny tekst źródłaGouillart, Louis, Andrea Cattoni, Wei-Chao Chen, Joya Zeitouny, Lars Riekehr, Jan Keller, Marie Jubault, Negar Naghavi, Marika Edoff i Stephane Collin. "Ultrathin Cu(In,Ga)Se2 solar cells with Ag-based reflective back contacts". W 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300534.
Pełny tekst źródłaKhan, Firoz, Amir Al-Ahmed i Jae Hyun Kim. "Impact of Cu Doping on PV Cell Parameters of NiO:Cu Nanostructure-Based Organic-Inorganic Perovskite Solar Cells". W 2020 3rd International Conference on Power and Energy Applications (ICPEA). IEEE, 2020. http://dx.doi.org/10.1109/icpea49807.2020.9280137.
Pełny tekst źródłaArnou, Panagiota, Sona Ulicna, Alexander Eeles, Mustafa Togay, Lewis D. Wright, Andrei V. Malkov, John M. Walls i Jake W. Bowers. "Variation of Cu Content of Sprayed Cu(In, Ga)(S,Se)2 Solar Cells Based on a Thiol-Amine Solvent Mixture". W 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366765.
Pełny tekst źródła