Artykuły w czasopismach na temat „Crystal Engineering Approach”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Crystal Engineering Approach”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lutfiyah, Dhea Sultana, Lili Fitriani, Muhammad Taher i Erizal Zaini. "Crystal Engineering Approach in Physicochemical Properties Modifications of Phytochemical". Science and Technology Indonesia 7, nr 3 (28.07.2022): 353–71. http://dx.doi.org/10.26554/sti.2022.7.3.353-371.
Pełny tekst źródłaPaul, Mithun, i Gautam R. Desiraju. "Designing multi-component molecular crystals: a crystal engineering approach". Acta Crystallographica Section A Foundations and Advances 73, a2 (1.12.2017): C675. http://dx.doi.org/10.1107/s2053273317088982.
Pełny tekst źródłaKrishna, Gamidi, Ramesh Devarapalli, Garima Lal i C. Reddy. "Design of Mechanically Flexible Organic Crystals: A Crystal Engineering Approach". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C648. http://dx.doi.org/10.1107/s2053273314093516.
Pełny tekst źródłaMann, Stephen. "Biomineralization: a novel approach to crystal engineering". Endeavour 15, nr 3 (styczeń 1991): 120–25. http://dx.doi.org/10.1016/0160-9327(91)90155-5.
Pełny tekst źródłaMatsumoto, Yuji, Shingo Maruyama i Kenichi Kaminaga. "Compositionally graded crystals as a revived approach for new crystal engineering for the exploration of novel functionalities". CrystEngComm 24, nr 13 (2022): 2359–69. http://dx.doi.org/10.1039/d2ce00041e.
Pełny tekst źródłaAnand, Rachna, Arun Kumar i Arun Nanda. "Pharmaceutical Co-Crystals - Design, Development and Applications". Drug Delivery Letters 10, nr 3 (10.09.2020): 169–84. http://dx.doi.org/10.2174/2210303109666191211145144.
Pełny tekst źródłaLombardo, Giuseppe M., Antonio Rescifina, Ugo Chiacchio, Alessia Bacchi i Francesco Punzo. "A top–down approach to crystal engineering of a racemic Δ2-isoxazoline". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, nr 1 (16.01.2014): 172–80. http://dx.doi.org/10.1107/s2052520613030862.
Pełny tekst źródłaChopra, Deepak, i Dhananjay Dey. "Computational approaches towards crystal engineering in molecular crystals". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C642. http://dx.doi.org/10.1107/s2053273314093577.
Pełny tekst źródłaChen, Jia-Mei, Zi-Zhou Wang, Chuan-Bin Wu, Song Li i Tong-Bu Lu. "Crystal engineering approach to improve the solubility of mebendazole". CrystEngComm 14, nr 19 (2012): 6221. http://dx.doi.org/10.1039/c2ce25724f.
Pełny tekst źródłaTalatahari, Babak, Mahdi Azizi, Siamak Talatahari, Mohamad Tolouei i Pooya Sareh. "Crystal structure optimization approach to problem solving in mechanical engineering design". Multidiscipline Modeling in Materials and Structures 18, nr 1 (1.03.2022): 1–23. http://dx.doi.org/10.1108/mmms-10-2021-0174.
Pełny tekst źródłaMukherjee, Gargi, i Kumar Biradha. "Topological Equivalences between Coordination Polymer and Co-crystal: A Tecton Approach in Crystal Engineering". Crystal Growth & Design 14, nr 2 (15.01.2014): 419–22. http://dx.doi.org/10.1021/cg401858s.
Pełny tekst źródłaVaghela, Pooja D., i H. M. Tank. "Improvement in Pharmacokinetic Parameters of Ibuprofen by Crystal Engineering Approach". Indo Global Journal of Pharmaceutical Sciences 10, nr 01 (2020): 19–24. http://dx.doi.org/10.35652/igjps.2020.10103.
Pełny tekst źródłaSahoo, P., D. K. Kumar, S. R. Raghavan i P. Dastidar. "The crystal engineering approach to design the pheromone releasing LMWG". Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22.08.2011): C231. http://dx.doi.org/10.1107/s0108767311094220.
Pełny tekst źródłaNath, Krishna G., Oleksandr Ivasenko, Jennifer M. MacLeod, Jill A. Miwa, James D. Wuest, Antonio Nanci, Dmitrii F. Perepichka i Federico Rosei. "Crystal Engineering in Two Dimensions: An Approach to Molecular Nanopatterning". Journal of Physical Chemistry C 111, nr 45 (listopad 2007): 16996–7007. http://dx.doi.org/10.1021/jp0762774.
Pełny tekst źródłaCollier, E. A., R. J. Davey, R. J. Roberts i S. N. Black. "A crystallisation/crystal engineering approach to aid salt selection - anions". Acta Crystallographica Section A Foundations of Crystallography 58, s1 (6.08.2002): c321. http://dx.doi.org/10.1107/s0108767302097805.
Pełny tekst źródłaLai, Hanjian, i Feng He. "Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach". Advanced Energy Materials 10, nr 47 (29.10.2020): 2002678. http://dx.doi.org/10.1002/aenm.202002678.
Pełny tekst źródłaPaz, Filipe A. Almeida, i Jacek Klinowski. "Designing novel organic–inorganic frameworks". Pure and Applied Chemistry 79, nr 6 (1.01.2007): 1097–110. http://dx.doi.org/10.1351/pac200779061097.
Pełny tekst źródłaStaar, Marcel, Sophie Staar i Anett Schallmey. "Crystal Contact Engineering for Enhanced Cross-Linking Efficiency of HheG Crystals". Catalysts 12, nr 12 (1.12.2022): 1553. http://dx.doi.org/10.3390/catal12121553.
Pełny tekst źródłaGeng, Yina, Greg van Anders, Paul M. Dodd, Julia Dshemuchadse i Sharon C. Glotzer. "Engineering entropy for the inverse design of colloidal crystals from hard shapes". Science Advances 5, nr 7 (lipiec 2019): eaaw0514. http://dx.doi.org/10.1126/sciadv.aaw0514.
Pełny tekst źródłaTupe, Suraj Ankush, Shital Prabhakar Khandagale i Amrapali B. Jadhav. "Pharmaceutical Cocrystals: An Emerging Approach to Modulate Physicochemical Properties of Active Pharmaceutical Ingredients". Journal of Drug Delivery and Therapeutics 13, nr 4 (15.04.2023): 101–12. http://dx.doi.org/10.22270/jddt.v13i4.6016.
Pełny tekst źródłaLian, Weiguang, Yulong Lin, Min Wang, Caiqin Yang i Jing Wang. "Crystal engineering approach to produce complex of azelnidipine with maleic acid". CrystEngComm 15, nr 19 (2013): 3885. http://dx.doi.org/10.1039/c3ce26967a.
Pełny tekst źródłaNam, Ki Hyun. "Processing of Multicrystal Diffraction Patterns in Macromolecular Crystallography Using Serial Crystallography Programs". Crystals 12, nr 1 (13.01.2022): 103. http://dx.doi.org/10.3390/cryst12010103.
Pełny tekst źródłaDhondale, Madhukiran R., Pradip Thakor, Amritha G. Nambiar, Maan Singh, Ashish K. Agrawal, Nalini R. Shastri i Dinesh Kumar. "Co-Crystallization Approach to Enhance the Stability of Moisture-Sensitive Drugs". Pharmaceutics 15, nr 1 (5.01.2023): 189. http://dx.doi.org/10.3390/pharmaceutics15010189.
Pełny tekst źródłaGonz´lez Mantero, D., A. Neels, F. Stoeckli i H. Stoeckli-Evans. "2-D and 3-D metal-organic frameworks: a crystal engineering approach". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c363—c364. http://dx.doi.org/10.1107/s0108767305084527.
Pełny tekst źródłaYan, Yan, Jia-Mei Chen i Tong-Bu Lu. "Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach". CrystEngComm 15, nr 33 (2013): 6457. http://dx.doi.org/10.1039/c3ce41017j.
Pełny tekst źródłaAdarsh, N. N., Pathik Sahoo i Parthasarathi Dastidar. "Is a Crystal Engineering Approach Useful in Designing Metallogels? A Case Study". Crystal Growth & Design 10, nr 11 (3.11.2010): 4976–86. http://dx.doi.org/10.1021/cg101078f.
Pełny tekst źródłaAn, Guanghui, Pengfei Yan, Jingwen Sun, Yuxin Li, Xu Yao i Guangming Li. "The racemate-to-homochiral approach to crystal engineering via chiral symmetry breaking". CrystEngComm 17, nr 24 (2015): 4421–33. http://dx.doi.org/10.1039/c5ce00402k.
Pełny tekst źródłaGAN, YONG X., i XI CHEN. "MACRO- AND MICROSCOPIC APPROACHES TO PLANE STRAIN DEFORMATION STATES OF FACE-CENTERED CUBIC METALS UNDER WEDGE INDENTATION". International Journal of Applied Mechanics 01, nr 01 (marzec 2009): 41–60. http://dx.doi.org/10.1142/s1758825109000022.
Pełny tekst źródłaRoy Choudhury, Angshuman, Gurpreet Kaur, Maheswararao Karanam i Sandhya Patel. ""Organic Fluorine" and its Importance in Crystal Engineering". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C669. http://dx.doi.org/10.1107/s2053273314093309.
Pełny tekst źródłaSonina, Alina A., Darya S. Cheshkina i Maxim S. Kazantsev. "Additive-Assisted Crystallization of 9,10-Diphenylanthracene". Crystals 13, nr 6 (24.05.2023): 861. http://dx.doi.org/10.3390/cryst13060861.
Pełny tekst źródłaCvetkovski, Aleksandar. "The Challenge for Engineering Pharmaceutical Crystalline Solids: Scientific and Regulatory Affairs Perspectives for Crystal Structure Design and Prediction". International Journal of Contemporary Research and Review 11, nr 11 (9.11.2020): 20201–10. http://dx.doi.org/10.15520/ijcrr.v11i11.859.
Pełny tekst źródłaDost, Sadik. "Recent Developments in Modeling of Liquid Phase Electroepitaxy: A Continuum Approach". Applied Mechanics Reviews 49, nr 12 (1.12.1996): 477–95. http://dx.doi.org/10.1115/1.3101920.
Pełny tekst źródłaQazi, M. J., H. Salim, C. A. W. Doorman, E. Jambon-Puillet i N. Shahidzadeh. "Salt creeping as a self-amplifying crystallization process". Science Advances 5, nr 12 (grudzień 2019): eaax1853. http://dx.doi.org/10.1126/sciadv.aax1853.
Pełny tekst źródłaCazacu, Oana, i Ioan R. Ionescu. "Dynamic crystal plasticity: An Eulerian approach". Journal of the Mechanics and Physics of Solids 58, nr 6 (czerwiec 2010): 844–59. http://dx.doi.org/10.1016/j.jmps.2010.04.001.
Pełny tekst źródłaBardella, Fernando, Andre Montes Rodrigues i Ricardo Mendes Leal Neto. "CrystalWalk: crystal structures, step by step". Journal of Applied Crystallography 50, nr 3 (25.05.2017): 949–50. http://dx.doi.org/10.1107/s160057671700560x.
Pełny tekst źródłaCaginalp, G. "A mathematical approach to crystal growth". Superlattices and Microstructures 3, nr 6 (styczeń 1987): 595–98. http://dx.doi.org/10.1016/0749-6036(87)90189-3.
Pełny tekst źródłaBelyakov, Vladimir A. "Optical Kossel Lines and Fluorescence in Photonic Liquid Crystals". Crystals 10, nr 6 (24.06.2020): 541. http://dx.doi.org/10.3390/cryst10060541.
Pełny tekst źródłaSnyder, Ryan C., i Michael F. Doherty. "Predicting crystal growth by spiral motion". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, nr 2104 (6.01.2009): 1145–71. http://dx.doi.org/10.1098/rspa.2008.0234.
Pełny tekst źródłaPekamwar, S. S., D. D. Gadade i G. K. Kale. "CO-CRYSTALLIZATION: TECHNIQUE FOR IMPROVEMENT OF PHARMACEUTICAL PROPERTIES". INDIAN DRUGS 53, nr 09 (28.09.2016): 5–11. http://dx.doi.org/10.53879/id.53.09.10454.
Pełny tekst źródłaErmanova, Inga, Narges Yaghoobi Nia, Enrico Lamanna, Elisabetta Di Bartolomeo, Evgeny Kolesnikov, Lev Luchnikov i Aldo Di Carlo. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions". Energies 14, nr 6 (22.03.2021): 1751. http://dx.doi.org/10.3390/en14061751.
Pełny tekst źródłaNoh, D., i J. W. Yoon. "Reduced texture approach for crystal plasticity finite element method toward macroscopic engineering applications". IOP Conference Series: Materials Science and Engineering 967 (19.11.2020): 012071. http://dx.doi.org/10.1088/1757-899x/967/1/012071.
Pełny tekst źródłaMercier, Gabriel M., Koen Robeyns i Tom Leyssens. "Altering the Photochromic Properties of N-Salicylideneanilines Using a Co-Crystal Engineering Approach". Crystal Growth & Design 16, nr 6 (18.05.2016): 3198–205. http://dx.doi.org/10.1021/acs.cgd.6b00108.
Pełny tekst źródłaLiu, Jun Jie, Yangzong Qin, Maya Bar Dolev, Yeliz Celik, J. S. Wettlaufer i Ido Braslavsky. "Modelling the influence of antifreeze proteins on three-dimensional ice crystal melt shapes using a geometric approach". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, nr 2147 (27.06.2012): 3311–22. http://dx.doi.org/10.1098/rspa.2011.0720.
Pełny tekst źródłavon Wolff, Lars, Felix Weinhardt, Holger Class, Johannes Hommel i Christian Rohde. "Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling". Transport in Porous Media 137, nr 2 (24.02.2021): 327–43. http://dx.doi.org/10.1007/s11242-021-01560-y.
Pełny tekst źródłaLee, Alfred Y., i Allan S. Myerson. "Particle Engineering: Fundamentals of Particle Formation and Crystal Growth". MRS Bulletin 31, nr 11 (listopad 2006): 881–86. http://dx.doi.org/10.1557/mrs2006.207.
Pełny tekst źródłaSudha, N., S. Anbuselvi, Sudhakar Jyothula, A. Thiruppathi, B. Vijayakumar, Kartikeya Parmar, G. Puthilibai i Leevesh Kumar. "Synthesis, Structural, Spectroscopic, and Hirshfeld Surface Analysis, and DFT Investigation of Benzaldehyde Semicarbazone". Advances in Materials Science and Engineering 2022 (16.06.2022): 1–14. http://dx.doi.org/10.1155/2022/4091119.
Pełny tekst źródłaZhang, Liangzhe, Rémi Dingreville, Timothy Bartel i Mark T. Lusk. "A stochastic approach to capture crystal plasticity". International Journal of Plasticity 27, nr 9 (wrzesień 2011): 1432–44. http://dx.doi.org/10.1016/j.ijplas.2011.04.002.
Pełny tekst źródłaHonjo, S., M. J. Cima, M. C. Flemings, T. Ohkuma, H. Shen, K. Rigby i T. H. Sung. "Seeded Crystal Growth of Yba2Cu3O6.5 in Semisolid Melts". Journal of Materials Research 12, nr 4 (kwiecień 1997): 880–90. http://dx.doi.org/10.1557/jmr.1997.0128.
Pełny tekst źródłaTanida, S., N. Takata, R. Takano, A. Sakon, T. Ueto, K. Shiraki, K. Kadota, Y. Tozuka i M. Ishigai. "Cocrystal structure design for CH5134731 based on isomorphism". CrystEngComm 20, nr 3 (2018): 362–69. http://dx.doi.org/10.1039/c7ce01878a.
Pełny tekst źródłaMcArthur, John B., i Xi Chen. "Glycosyltransferase engineering for carbohydrate synthesis". Biochemical Society Transactions 44, nr 1 (9.02.2016): 129–42. http://dx.doi.org/10.1042/bst20150200.
Pełny tekst źródła