Gotowa bibliografia na temat „Cryogenic Instrumentation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cryogenic Instrumentation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cryogenic Instrumentation"
Poncet, J. M., J. Manzagol, A. Attard, J. André, L. Bizel-Bizellot, P. Bonnay, E. Ercolani i in. "Cryogenic instrumentation for ITER magnets". IOP Conference Series: Materials Science and Engineering 171 (luty 2017): 012130. http://dx.doi.org/10.1088/1757-899x/171/1/012130.
Pełny tekst źródłaVaught, Louis, Vasilis Tsigkis i Andreas A. Polycarpou. "Development of a controlled-atmosphere, rapid-cooling cryogenic chamber for tribological and mechanical testing". Review of Scientific Instruments 93, nr 8 (1.08.2022): 083911. http://dx.doi.org/10.1063/5.0102702.
Pełny tekst źródłaRicketson, B. W. A. "Cryogenic Temperature Measurement". Platinum Metals Review 33, nr 2 (1.04.1989): 55–57. http://dx.doi.org/10.1595/003214089x3325557.
Pełny tekst źródłaFleischer, S. M., M. P. Ross, K. Venkateswara, C. A. Hagedorn, E. A. Shaw, E. Swanson, B. R. Heckel i J. H. Gundlach. "A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat". Review of Scientific Instruments 93, nr 6 (1.06.2022): 064505. http://dx.doi.org/10.1063/5.0089933.
Pełny tekst źródłaHuppi, Ernest Ray. "Cryogenic instrumentation and detector limits in FTS". Mikrochimica Acta 93, nr 1-6 (styczeń 1987): 281–96. http://dx.doi.org/10.1007/bf01201695.
Pełny tekst źródłaTsai, C. C., J. R. Feller, Bimal K. Sarma i J. B. Ketterson. "Instrumentation for cryogenic microwave cavity resonance measurements". Review of Scientific Instruments 75, nr 10 (20.09.2004): 3158–63. http://dx.doi.org/10.1063/1.1781387.
Pełny tekst źródłaCreus Prats, J., D. Montanari, M. Adamowski, G. Cline, F. Matichard, M. Delaney i A. Lawrence. "Status of LBNF/DUNE near site liquid argon proximity and external cryogenics systems development." IOP Conference Series: Materials Science and Engineering 1240, nr 1 (1.05.2022): 012084. http://dx.doi.org/10.1088/1757-899x/1240/1/012084.
Pełny tekst źródłaBoeckmann, T., J. Bolte, Y. Bozhko, M. Clausen, K. Escherich, O. Korth, J. Penning i in. "Use of PROFIBUS for cryogenic instrumentation at XFEL". IOP Conference Series: Materials Science and Engineering 278 (grudzień 2017): 012088. http://dx.doi.org/10.1088/1757-899x/278/1/012088.
Pełny tekst źródłaBurrows, Nathan D., i R. Lee Penn. "Cryogenic Transmission Electron Microscopy: Aqueous Suspensions of Nanoscale Objects". Microscopy and Microanalysis 19, nr 6 (4.09.2013): 1542–53. http://dx.doi.org/10.1017/s1431927613013354.
Pełny tekst źródłaYang, Fan, Xinliang Wang, Sichen Fan, Yang Bai, Junru Shi, Dandan Liu, Hui Zhang i in. "Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock". Review of Scientific Instruments 93, nr 4 (1.04.2022): 044708. http://dx.doi.org/10.1063/5.0082708.
Pełny tekst źródłaRozprawy doktorskie na temat "Cryogenic Instrumentation"
Markhasin, Evgeny. "High field DNP and cryogenic MAS NMR : novel instrumentation and applications". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/87469.
Pełny tekst źródłaCataloged from PDF version of thesis. "February 2014."
Includes bibliographical references.
Solid State Nuclear Magnetic Resonance (ssNMR) spectroscopy has blossomed over the last two decades. As ssNMR is progressively applied to more challenging systems, the sensitivity remains one of its major limiting factors. Gyrotron based high-field dynamic nuclear polarization (DNP) permits increasing the sensitivity of ssNMR by 1-2 orders magnitude, significantly extending the reach of ssNMR. Successful application of ssNMR/DNP at 5T and 9.4T stimulated interest to extending this technique to higher fields and new applications. Here, the progress toward this goal is presented. It has involved completion of the world highest field magic angle spinning (MAS) DNP spectrometer and a probe for 16.4T, initial DNP experiments on ¹⁷ O nuclei, variable temperature studies of a model tripeptide, and a systematic analysis of a novel approach to high efficiency RF circuit design. The extension of DNP-NMR to 16.4T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. A novel DNP probe and cryogenic instrumentation permit extended operation at 85-90K and 10kHz MAS. Initial enhancements [epsilon]=-40 and further optimization of experimental conditions is underway. ¹⁷ O detected DNP-NMR of a water/glycerol glass at 5T enabled an 80-fold enhancement of signal intensities at 82K permitting ¹⁷ O- ¹H distance measurements and heteronuclear correlation experiments. Variable temperature MAS NMR studies of a model tripeptide APG in combination with cryogenic calorimetry and XRD revealed a first-order phase transition and severe attenuation of the cross polarization MAS signal in a wide temperature range due to interference between decoupling and 3-fold hopping of the Ala-CH₃ and Ala-NH₃+ groups. A new, efficient strategy for designing balanced transmission line RF circuits for MAS NMR probes based on back propagation of a common impedance node (BPCIN) is presented. In this approach, the impedance node is the sole means of achieving mutual RF isolation and balance in all channels. BPCIN is illustrated using a custom double resonance MAS probe operating at 11.7T.
by Evgeny Markhasin.
Ph. D.
Waagaard, Elias. "Benchmarking a Cryogenic Code for the FREIA Helium Liquefier". Thesis, Uppsala universitet, FREIA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412781.
Pełny tekst źródłaTermodynamiken bakom heliumförvätskaren i FREIA-laboratoriet innehåller fortfarande många okända aspekter. Detta kandidatarbete syftar till att utveckla en teoretisk modell och implementera den i MATLAB med hjälp av biblioteket CoolProp. Denna modell av FREIA:s förvätskningscykel syftar till att hitta de okända parametrar som inte specificerats av tillverkaren, och baserar sig på principen om entalpins bevarande. Inspiration togs från de klassiska förvätskningscyklerna Linde-Hampson, Claude och Collins. Vi utvecklade en linjär matematisk modell för cykelkomponenter såsom expansionsturbiner och värmeväxlare, och en icke-linjär modell för själva förvätskningen i fasseparatorn. En förvätskningsverkningsgrad på 10% och 6% uppnåddes i våra modellsimuleringar, med respektive utan förkylning med flytande kväve - liknande verkningsgraderna i FREIA- förvätskaren inom en procentenhet. Sensorerna placerade i FREIA visade på liknande tryck och temperaturer, även om bristen på sensorer gjorde att vi inte kunde bekräfta varje punkt. Vi observerade en ökning på mer än 50% i verkningsgrad efter att ha justerat värmeväxlardesignen något, speciellt för den första. Detta kan utgöra riktlinjer för var man framöver kan förbättra den faktiska förvätskaren.
Subject reader/Ämnesgranskare: Roger Ruber
Pedurand, Richard. "Instrumentation for Thermal Noise Spectroscopy". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1356.
Pełny tekst źródłaThe resolution limit of gravitational wave interferometers is set by their mirrors' Brownian motion – or thermal noise - in the central part of their detection band, from 10Hz to 1kHz. This thermal noise frequency distribution is given by the mechanical energy dissipation mechanisms it originates from, in agreement with the fluctuation-dissipation theorem. This dissipation mainly derives from the optical coatings deposited on the mirrors to give them their reflectivity. To reduce this thermal noise, a new generation of gravitational wave detectors employing mirrors cooled to cryogenic temperature has been suggested. The development of new optical thin-film materials with low mechanical dissipation, operating at both room and cryogenic temperatures, therefore requires new experimental tools. The main object of this thesis is the construction of a new instrument, the CryoQPDI, which is an association between a high-resolution interferometer and a cryostat based on a pulse tube cooler. It can directly measure the Brownian motion of a microcantilever between 300 K and 7 K. By combining measurements made on a microcantilever before and after the deposition of a thin film, it is possible to characterize the internal mechanical dissipation of this thin film. This instrument will eventually contribute to the optimisation of optical coatings of future gravitational wave detectors, aiming at minimizing the limitations due to thermal noise
Geffroy, Clément. "Impulsions ultra-courte d'électron unique pour les qubits volants". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY101.
Pełny tekst źródłaThe second quantum revolution of the 20th century contributed to a technological expansion in solid-state physics. Modern nanofabrication coupled to material processing techniques have facilitated the development of on-demand single-electron sources. With their remarkable precision, they are currently used for metrology purposes and hold key potential for the recent field of research of electron quantum optics, including a promising candidate for quantum information: the electron flying qubit. These quantum bits are created by short voltage pulses and manipulation of their quantum state occurs on-the-fly. The shortest voltage pulse reported so far attains 27 ps, on-chip, in a cryogenic environment. However, suffering from attenuation and dispersion in coaxial lines, accessibility to electronic quantum regimes at faster time scale remains out-of-reach.On the contrary, empowered by the advent of ultrafast lasers and progress in photonics and plasmonics, photo-conductive-switch technology can allow the generation of electromagnetic pulses with picosecond duration. The large bandwidth of these THz opto-electronic technologies could overcome the technical bottleneck faced by standard electronic equipment. While they have been widely developed for room temperature applications, demonstrations of their integration along-side a quantum architecture in a cryogenic environment are still limited. The realisation of such an experiment would unlock new research directions for studying the dynamics of solid-state electronic quantum devices.In this manuscript, we present the development of an experimental setup to generate picosecond voltage pulses in a cryogenic environment for flying qubit applications. A femtosecond laser generates pulses that are injected into optical fibres and integrated at low temperatures. Fabricated on the surface of Low Temperature grown GaAs (LT-GaAs), a photoconductive-switch is co-integrated to the quantum circuit formed on a high mobility two-Dimensional Electron Gas (2DEG). Owing to the extremely fast opto-electronic response of the LT-GaAs, the photo-conductive device converts optical pulses into voltage pulses with a duration as short as a few picoseconds. Using a THz CoPlanar Waveguide (CPW) circuit, the pulse is conveyed toward the 2DEG, where it is used as an ultra-short single-electron source.To perform pump-probe measurement and resolve the dynamic profile of such pulses, an original experimental setup, involving piezo-electric positioners and alignment protocols at low-temperatures, was implemented. As proof of concept, we first report the characterisation at 300 K of electronic pulses with 1.9 ps duration. In a second step, we cool down the system to 4 K and measure 2.3 ps wide pulses, thus expanding the proof of concept to cryogenic environments. Then, by integrating a 2DEG structure along-side the THz circuit, we were able to excite THz plasmons in a Fabry-Pérot cavity. The characteristic frequency of their fundamental mode was compared to an analytical model that revealed information about the carrier density of the electron gas under illumination. In parallel, extensive developments were carried out on the design of CPWs in order to minimise undesirable signal reflections as well as dispersion losses. Finally, with the prospect of measuring and controlling the propagation of picosecond electron pulse in quantum channels directly with ultrafast THz electrostatic gates, the fabrication of the next generation of devices was initiated. This work will pave the way for on-chip integration of picosecond voltage pulses into quantum nanoelectronics devices and ultrafast control of electronic flying qubits
Volpe, Angela. "Développement d'un réfrigérateur à dilution en boucle fermée pour expériences d'astrophysique dans l'espace". Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00993970.
Pełny tekst źródłaFlorea, Ovidiu. "Développement d'un magnétomètre nanofabriqué très basse température (30 mK) et fort champ magnétique (16 T) : étude de nouveaux états magnétiques apparaissant dans les nanoaimants frustrés". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY061/document.
Pełny tekst źródłaThe objective of this work was to develop a Faraday force magnetometer to measureabsolute values of the magnetization at very low temperatures (30 mK) andhigh applied magnetic fields (16 T) with a high sensitivity (10-5 emu). This magnetometer will be especially dedicated to the study of the field induced properties of frustrated magnets.In a first part, I present the development of this magnetometer. It involves the optimization of the dilution refrigerator and field gradient coils, and the development of a capacitive detection with a cold amplifier stage to improve the measurement sensitivity. Preliminary magnetic measurements are shown. The changes in the design required to make the magnetometer operational are discussed.In a second part, I focus on experimental studies of frustrated magnets: Gadolinium garnets, described by classical spins, and Copper based frustrated molecular compounds, to probe quantum effects. These measurements were performed from 70 mK to 300 K, with the existing magnetometers at the Institut Neel.In Gd3Ga5O12, we have complemented the H-T phase diagram. This phase diagram was proven to be robust by our study on the isomorphous compound, Gd3Al5O12. We evidence the convergence of all the observed phases to a unique point in both samples.In quantum systems, we performed preliminary studies on Cu44 clusters with tetrahedral motives, and on a triangular system Cu3. Although promising, these studies were not pursued due to sample problems
Rabhi, Abdelali. "Fabrication et caracterisation de jonctions sis dans un recepteur a 110 ghz". Paris 6, 1987. http://www.theses.fr/1987PA066593.
Pełny tekst źródłaGrockowiak, Audrey. "Supraconductivité et propriétés physiques du silicium très fortement dopé". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00858585.
Pełny tekst źródłaHuisman, Maximiliaan. "Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life Sciences". eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1017.
Pełny tekst źródłaOlofsson, Joel. "Thermo-mechanical analysis of cryo-cooled electrode system in COMSOL". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353895.
Pełny tekst źródłaKsiążki na temat "Cryogenic Instrumentation"
United States. National Aeronautics and Space Administration., red. Cryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Cryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaPower control electronics for cryogenic instrumentation. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaCryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaLattman, Eaton E., Thomas D. Grant i Edward H. Snell. Developments on the Horizon. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0013.
Pełny tekst źródłaCzęści książek na temat "Cryogenic Instrumentation"
Timmerhaus, Klaus D., i Thomas M. Flynn. "Cryogenic Instrumentation". W Cryogenic Process Engineering, 477–551. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8756-5_8.
Pełny tekst źródłaSarwinski, Raymond E. "Cryogenic Requirements for Medical Instrumentation". W A Cryogenic Engineering Conference Publication, 87–95. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_11.
Pełny tekst źródłaTalley, D. H., i C. S. Bordelon. "Instrumentation for the Saturn Liquid Hydrogen Experiment". W Advances in Cryogenic Engineering, 509–22. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0516-4_53.
Pełny tekst źródłaRao, M. G., i R. G. Scurlock. "Cryogenic Instrumentation with Cold Electronics — a Review". W Advances in Cryogenic Engineering, 1211–20. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_135.
Pełny tekst źródłaIge, O. O., Y. Iwasa i H. Fujita. "Acoustic Emission Instrumentation for a Superconducting Dipole". W Advances in Cryogenic Engineering, 303–8. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_34.
Pełny tekst źródłaBuchanan, D. S., D. Paulson i S. J. Williamson. "Instrumentation for Clinical Applications of Neuromagnetism". W A Cryogenic Engineering Conference Publication, 97–106. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_12.
Pełny tekst źródłaZichy, J. A. "Review of Instrumentation for Superconducting Magnets". W A Cryogenic Engineering Conference Publication, 1053–62. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_127.
Pełny tekst źródłaMcGuire, K., J. Strait, M. Kuchnir i A. McInturff. "Cryogenic Instrumentation of an SSC Magnet Test Stand". W A Cryogenic Engineering Conference Publication, 1063–70. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_128.
Pełny tekst źródłaScurlock, R. G., i R. Webb. "Instrumentation of Cryogenic Systems and Plant to Accuracy of 0.01% Using Cold Electronics". W Advances in Cryogenic Engineering, 1013–18. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_123.
Pełny tekst źródłaKneisel, P. "Superconducting Radio-Frequency Technology: Understanding and Improvements of Limitations Through Application of Cryogenic Instrumentation". W Advances in Cryogenic Engineering, 53–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Cryogenic Instrumentation"
Garcia Peris, Miguel Angel. "Cryogenic Instrumentation at ProtoDUNE". W 40th International Conference on High Energy physics. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.390.0131.
Pełny tekst źródłaHopkins, Richard A., Paul T. Finley, Russell B. Schweickart i Stephen M. Volz. "Cryogenic/thermal system for the SIRTF cryogenic telescope assembly". W Astronomical Telescopes and Instrumentation, redaktor John C. Mather. SPIE, 2003. http://dx.doi.org/10.1117/12.461788.
Pełny tekst źródłaVauthier, N., R. Avramidou, Ch Balle, J. Casashyphen;Cubillos, M. Ciechanowski, G. Fernandez-Penacoba, E. Fortescue-Beck i in. "FIRST EXPERIENCE WITH THE LHC CRYOGENIC INSTRUMENTATION". W ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908695.
Pełny tekst źródłaSerrano, Javier, Javier Moreno Raso, David González de María, Heribert Argelaguet Vilaseca, Mikel Lamensans, David López Justo i Violeta Sanz Puig. "Cryogenic submicron linear actuator". W SPIE Astronomical Telescopes + Instrumentation. SPIE, 2010. http://dx.doi.org/10.1117/12.856266.
Pełny tekst źródłaRohloff, Ralf-Rainer, Harald Baumeister, Monica Ebert, Norbert Munch i Vianak Naranjo. "Cryogenic actuators in ground-based astronomical instrumentation". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy Joseph Antebi i Dietrich Lemke. SPIE, 2004. http://dx.doi.org/10.1117/12.551114.
Pełny tekst źródłaGennari, Sandro, Filippo Mannucci i Leonardo Vanzi. "Cryogenic stepper motors for infrared astronomical instrumentation". W Optical Engineering and Photonics in Aerospace Sensing, redaktor Albert M. Fowler. SPIE, 1993. http://dx.doi.org/10.1117/12.158712.
Pełny tekst źródłaKegley, Jeff, Mark Baker, Jay Carpenter, Ron Eng, Harlan Haight, William Hogue, Jeff McCracken, Kevin Russell, Richard Siler i Ernie Wright. "Improved cryogenic testing capability at Marshall Space Flight Center's X-ray Cryogenic Facility". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy John C. Mather, Howard A. MacEwen i Mattheus W. M. de Graauw. SPIE, 2006. http://dx.doi.org/10.1117/12.672096.
Pełny tekst źródłaJedamzik, R., i T. Westerhoff. "ZERODUR TAILORED for cryogenic application". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy Ramón Navarro, Colin R. Cunningham i Allison A. Barto. SPIE, 2014. http://dx.doi.org/10.1117/12.2055086.
Pełny tekst źródłaHofmann, Reiner, Holger Mandel, Walter Seifert, Andreas Seltmann, Niranjan A. Thatte, Daigo Tomono i Harald Weisz. "Cryogenic MOS-unit for LUCIFER". W Astronomical Telescopes and Instrumentation, redaktorzy Masanori Iye i Alan F. M. Moorwood. SPIE, 2003. http://dx.doi.org/10.1117/12.460892.
Pełny tekst źródłaBree, B. v., H. Janssen, S. Paalvast i R. Albers. "Cryogenic actuator for subnanometer positioning". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy Ramón Navarro, Colin R. Cunningham i Eric Prieto. SPIE, 2012. http://dx.doi.org/10.1117/12.925351.
Pełny tekst źródłaRaporty organizacyjne na temat "Cryogenic Instrumentation"
McGuire, K., J. Strait, M. Kuchnir i A. McInturff. Cryogenic Instrumentation of an SSC Magnet Test Stand. Office of Scientific and Technical Information (OSTI), wrzesień 1987. http://dx.doi.org/10.2172/1151467.
Pełny tekst źródłaMarkley, D. D-Zero Cryogenic System VLPC & Solenoid Vacuum System Instrumentation, Control, and Logic. Office of Scientific and Technical Information (OSTI), styczeń 1998. http://dx.doi.org/10.2172/1032118.
Pełny tekst źródła