Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Crowded lipid membrane biophysics.

Artykuły w czasopismach na temat „Crowded lipid membrane biophysics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Crowded lipid membrane biophysics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Erwin, Nelli, Satyajit Patra, Mridula Dwivedi, Katrin Weise i Roland Winter. "Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity". Biological Chemistry 398, nr 5-6 (1.05.2017): 547–63. http://dx.doi.org/10.1515/hsz-2016-0289.

Pełny tekst źródła
Streszczenie:
Abstract The partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into various membrane systems, ranging from single-component fluid bilayers, binary fluid mixtures, heterogeneous raft model membranes up to complex native-like lipid mixtures (GPMVs) in the absence and presence of integral membrane proteins have been explored in the last decade in a combined chemical-biological and biophysical approach. These studies have revealed pronounced isoform-specific differences regarding the lateral distribution in membranes and formation of protein-rich membrane domains. In this context, we will also discuss the effects of lipid head group structure and charge density on the partitioning behavior of the lipoproteins. Moreover, the dynamic properties of N-Ras and K-Ras4B have been studied in different model membrane systems and native-like crowded milieus. Addition of crowding agents such as Ficoll and its monomeric unit, sucrose, gradually favors clustering of Ras proteins in forming small oligomers in the bulk; only at very high crowder concentrations association is disfavored.
Style APA, Harvard, Vancouver, ISO itp.
2

Arnarez, C., S. J. Marrink i X. Periole. "Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes". Chemical Science 7, nr 7 (2016): 4435–43. http://dx.doi.org/10.1039/c5sc04664e.

Pełny tekst źródła
Streszczenie:
We reveal the molecular mechanism by which cardiolipin glues respiratory complexes into supercomplexes. This mechanism defines a new biophysico-chemical pathway of protein–lipid interplay, with broad general implications for the dynamic organization of crowded cell membranes.
Style APA, Harvard, Vancouver, ISO itp.
3

Kessler, Michael S., i Susan Gillmor. "Lipid Membrane Phase Dynamics". Biophysical Journal 104, nr 2 (styczeń 2013): 248a. http://dx.doi.org/10.1016/j.bpj.2012.11.1398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Nawrocki, Grzegorz, Wonpil Im, Yuji Sugita i Michael Feig. "Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending". Proceedings of the National Academy of Sciences 116, nr 49 (18.11.2019): 24562–67. http://dx.doi.org/10.1073/pnas.1910771116.

Pełny tekst źródła
Streszczenie:
Atomistic molecular dynamics simulations of concentrated protein solutions in the presence of a phospholipid bilayer are presented to gain insights into the dynamics and interactions at the cytosol–membrane interface. The main finding is that proteins that are not known to specifically interact with membranes are preferentially excluded from the membrane, leaving a depletion zone near the membrane surface. As a consequence, effective protein concentrations increase, leading to increased protein contacts and clustering, whereas protein diffusion becomes faster near the membrane for proteins that do occasionally enter the depletion zone. Since protein–membrane contacts are infrequent and short-lived in this study, the structure of the lipid bilayer remains largely unaffected by the crowded protein solution, but when proteins do contact lipid head groups, small but statistically significant local membrane curvature is induced, on average.
Style APA, Harvard, Vancouver, ISO itp.
5

Fischer, Wolfgang B. "Assembling Within The Lipid Membrane: Viral Membrane Proteins". Biophysical Journal 96, nr 3 (luty 2009): 338a—339a. http://dx.doi.org/10.1016/j.bpj.2008.12.3823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mitchison-Field, Lorna MY, i Brittany J. Belin. "Bacterial lipid biophysics and membrane organization". Current Opinion in Microbiology 74 (sierpień 2023): 102315. http://dx.doi.org/10.1016/j.mib.2023.102315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ho, Chian Sing, Nawal K. Khadka, Fengyu She, Jianfeng Cai i Jianjun Pan. "Polyglutamine aggregates impair lipid membrane integrity and enhance lipid membrane rigidity". Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, nr 4 (kwiecień 2016): 661–70. http://dx.doi.org/10.1016/j.bbamem.2016.01.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wang, Hongyin, Kandice R. Levental, Joseph H. Lorent, Adhvikaa A. Revathi i Ilya Levental. "Lipid scrambling facilitates membrane vesiculation through decreasing membrane stiffness". Biophysical Journal 122, nr 3 (luty 2023): 22a—23a. http://dx.doi.org/10.1016/j.bpj.2022.11.347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hoopes, Matthew I., Roland Faller i Marjorie L. Longo. "Membrane Curvature Modeling and Lipid Organization in Supported Lipid Bilayers". Biophysical Journal 98, nr 3 (styczeń 2010): 78a—79a. http://dx.doi.org/10.1016/j.bpj.2009.12.445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sodt, Alexander J., Olivier Soubias, Klaus Gawrisch i Richard W. Pastor. "Lipid-Lipid Coupling to Membrane Curvature by Simulation and NMR". Biophysical Journal 110, nr 3 (luty 2016): 243a. http://dx.doi.org/10.1016/j.bpj.2015.11.1340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ericsson, Maria, Victoria von Saucken, Andrew J. Newman, Lena Doehr, Camilla Hoesch, Tae-Eun Kim i Ulf Dettmer. "Crowded organelles, lipid accumulation, and abnormal membrane tubulation in cellular models of enhanced α-synuclein membrane interaction". Brain Research 1758 (maj 2021): 147349. http://dx.doi.org/10.1016/j.brainres.2021.147349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Duncan, Anna L., Heidi Koldsø, Tyler Reddy, Jean Helie i Mark S. P. Sansom. "Lipid Composition Modulates Membrane Protein Clustering". Biophysical Journal 110, nr 3 (luty 2016): 81a. http://dx.doi.org/10.1016/j.bpj.2015.11.499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Sapp, Kayla, i Alexander J. Sodt. "Analyzing membrane mechanics and lipid dynamics using lateral lipid density fluctuations". Biophysical Journal 122, nr 3 (luty 2023): 362a. http://dx.doi.org/10.1016/j.bpj.2022.11.2002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Snead, Wilton T., Wade F. Zeno, Grace Kago, Ryan W. Perkins, J. Blair Richter, Chi Zhao, Eileen M. Lafer i Jeanne C. Stachowiak. "BAR scaffolds drive membrane fission by crowding disordered domains". Journal of Cell Biology 218, nr 2 (30.11.2018): 664–82. http://dx.doi.org/10.1083/jcb.201807119.

Pełny tekst źródła
Streszczenie:
Cellular membranes are continuously remodeled. The crescent-shaped bin-amphiphysin-rvs (BAR) domains remodel membranes in multiple cellular pathways. Based on studies of isolated BAR domains in vitro, the current paradigm is that BAR domain–containing proteins polymerize into cylindrical scaffolds that stabilize lipid tubules. But in nature, proteins that contain BAR domains often also contain large intrinsically disordered regions. Using in vitro and live cell assays, here we show that full-length BAR domain–containing proteins, rather than stabilizing membrane tubules, are instead surprisingly potent drivers of membrane fission. Specifically, when BAR scaffolds assemble at membrane surfaces, their bulky disordered domains become crowded, generating steric pressure that destabilizes lipid tubules. More broadly, we observe this behavior with BAR domains that have a range of curvatures. These data suggest that the ability to concentrate disordered domains is a key driver of membrane remodeling and fission by BAR domain–containing proteins.
Style APA, Harvard, Vancouver, ISO itp.
15

Chawla, Udeep, Suchithranga M. D. C. Perera, Adam A. Wallace, James W. Lewis, Blake Mertz i Michael F. Brown. "Membrane Bilayer Environment Influences Thermodynamics of Rhodopsin Membrane Protein-Lipid Interactions". Biophysical Journal 104, nr 2 (styczeń 2013): 434a. http://dx.doi.org/10.1016/j.bpj.2012.11.2413.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hwang, Hyeondo (Luke), Peter J. Chung, Alessandra Leong i Ka Yee C. Lee. "Understanding How Alpha-Synuclein Modifies Steric Interactions of Silica Supported Lipid Bilayers in Crowded Environments". Biophysical Journal 116, nr 3 (luty 2019): 509a. http://dx.doi.org/10.1016/j.bpj.2018.11.2745.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Cooke, Ira R., i Markus Deserno. "Coupling between Lipid Shape and Membrane Curvature". Biophysical Journal 91, nr 2 (lipiec 2006): 487–95. http://dx.doi.org/10.1529/biophysj.105.078683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Edidin, Michael. "Switching Sides: The Actin/Membrane Lipid Connection". Biophysical Journal 91, nr 11 (grudzień 2006): 3963. http://dx.doi.org/10.1529/biophysj.106.094078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ho, C., i C. D. Stubbs. "Hydration at the membrane protein-lipid interface". Biophysical Journal 63, nr 4 (październik 1992): 897–902. http://dx.doi.org/10.1016/s0006-3495(92)81671-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Camp, Philip, Jacek Biernat, Eckhard Mandelkow, Jaroslaw Majewski i Eva Y. Chi. "Lipid-Membrane Mediated Tau Misfolding and Aggregation". Biophysical Journal 98, nr 3 (styczeń 2010): 239a—240a. http://dx.doi.org/10.1016/j.bpj.2009.12.1300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ranganathan, Radha, i Jasmeet Singh. "Characterization of Membrane Bound Phospholipase-Lipid Complex". Biophysical Journal 98, nr 3 (styczeń 2010): 448a—449a. http://dx.doi.org/10.1016/j.bpj.2009.12.2439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lai, Alex L., i David S. Cafiso. "Synaptotagmin Perturbs Lipid Structure of Membrane Bilayers". Biophysical Journal 98, nr 3 (styczeń 2010): 483a. http://dx.doi.org/10.1016/j.bpj.2009.12.2629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Rostovtseva, Tatiana K., Michael Weinrich, Meng-Yang Chen, Kely L. Sheldon i Sergey M. Bezrukov. "Membrane Lipid Composition Regulates Tubulin-VDAC Interaction". Biophysical Journal 100, nr 3 (luty 2011): 42a. http://dx.doi.org/10.1016/j.bpj.2010.12.429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Last, Julie A., Tina A. Waggoner i Darryl Y. Sasaki. "Lipid Membrane Reorganization Induced by Chemical Recognition". Biophysical Journal 81, nr 5 (listopad 2001): 2737–42. http://dx.doi.org/10.1016/s0006-3495(01)75916-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ohki, Shinpei, i Yoichi Takato. "A Molecular Mechanism of Lipid Membrane Fusion". Biophysical Journal 104, nr 2 (styczeń 2013): 92a. http://dx.doi.org/10.1016/j.bpj.2012.11.550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Marte, Joseph A., Dalia Hassan i Frank X. Vazquez. "Dynamin pH Domain Interactions with Lipid Membrane". Biophysical Journal 116, nr 3 (luty 2019): 203a. http://dx.doi.org/10.1016/j.bpj.2018.11.1124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dietel, Lisa, Louma Kalie i Heiko Heerklotz. "Lipid Scrambling Induced by Membrane-Active Substances". Biophysical Journal 119, nr 4 (sierpień 2020): 767–79. http://dx.doi.org/10.1016/j.bpj.2020.07.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Izumi, Kayano, Keisuke Shimizu i Ryuji Kawano. "Lipid Membrane Deformation Induced by Transmembrane Peptides". Biophysical Journal 118, nr 3 (luty 2020): 231a. http://dx.doi.org/10.1016/j.bpj.2019.11.1368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Disalvo, E. Anibal, A. Sebastian Rosa, Jimena P. Cejas i María de los A. Frias. "Water as a Link between Membrane and Colloidal Theories for Cells". Molecules 27, nr 15 (5.08.2022): 4994. http://dx.doi.org/10.3390/molecules27154994.

Pełny tekst źródła
Streszczenie:
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autonomous and responsive system using the approach of Thermodynamic of Irreversible Processes. The concept of an open/non-autonomous membrane system allows for the visualization of the interrelationship between metabolic events and membrane polymorphic changes. Therefore, the Association Induction Hypothesis (AIH) and lipid properties interplay should consider hydration in terms of free energy modulated by water activity and surface (lateral) pressure. Water in restricted regions at the lipid interphase has thermodynamic properties that explain the role of H-bonding networks in the propagation of events between membrane and cytoplasm that appears to be relevant in the context of crowded systems.
Style APA, Harvard, Vancouver, ISO itp.
30

Marassi, Francesca M. "NMR Structural Studies of Membrane Proteins in Lipid Micelles and Lipid Bilayers". Biophysical Journal 98, nr 3 (styczeń 2010): 209a. http://dx.doi.org/10.1016/j.bpj.2009.12.1123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Weber, Florian, Herbert Stangl, Taras Synch, Birgit Plochberger i Erdinc Sezgin. "HDL-membrane-interactions are highly influenced by the target membrane-lipid composition". Biophysical Journal 122, nr 3 (luty 2023): 222a. http://dx.doi.org/10.1016/j.bpj.2022.11.1320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Mukhin, Sergei I., i Boris B. Kheyfets. "Inter-Domain Line Tension Induced by Hydrophobic Lipid Tails in a Lipid Membrane". Biophysical Journal 100, nr 3 (luty 2011): 493a. http://dx.doi.org/10.1016/j.bpj.2010.12.2890.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Sandberg, Jesse, i Grace H. Brannigan. "Coronavirus Envelope Protein: Lipid Sensitivity and Membrane Bending". Biophysical Journal 120, nr 3 (luty 2021): 227a. http://dx.doi.org/10.1016/j.bpj.2020.11.1513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Nylander, Tommy, Viveka Alfredsson, Pierandrea Lo Nostro i Barry Ninham. "Morphologies and structure of brain lipid membrane dispersions". Biophysical Journal 121, nr 3 (luty 2022): 216a. http://dx.doi.org/10.1016/j.bpj.2021.11.1659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Morgenstein, Lion, Merav Tsubary, Ayelet Atkins, Asaf Grupi i Shimon Weiss. "Controlled membrane interactions by lipid coated quantum dots". Biophysical Journal 121, nr 3 (luty 2022): 73a. http://dx.doi.org/10.1016/j.bpj.2021.11.2335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hager-Barnard, Elizabeth A., Benjamin D. Almquist i Nicholas A. Melosh. "Lipid Membrane Penetration Forces from AFM Force Spectroscopy". Biophysical Journal 96, nr 3 (luty 2009): 389a. http://dx.doi.org/10.1016/j.bpj.2008.12.2909.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Fiedler, Steven L., i Angela Violi. "Simulation of Nanoparticle Permeation through a Lipid Membrane". Biophysical Journal 99, nr 1 (lipiec 2010): 144–52. http://dx.doi.org/10.1016/j.bpj.2010.03.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Heimburg, Thomas. "The Physics of Nerves and Lipid Membrane Channels". Biophysical Journal 100, nr 3 (luty 2011): 4a. http://dx.doi.org/10.1016/j.bpj.2010.11.072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Gopalakrishnan, Gopakumar, Patricia T. Yam, Isabelle Rouiller, David R. Colman i R. Bruce Lennox. "Lipid Membrane Domains Promote In-Vitro Presynapse Formation". Biophysical Journal 100, nr 3 (luty 2011): 507a. http://dx.doi.org/10.1016/j.bpj.2010.12.2966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kurad, Dieter, Gunnar Jeschke i Derek Marsh. "Lipid Membrane Polarity Profiles by High-Field EPR". Biophysical Journal 85, nr 2 (sierpień 2003): 1025–33. http://dx.doi.org/10.1016/s0006-3495(03)74541-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Goose, Joseph E., Matthieu Chavent i Mark S. P. Sansom. "How Instantaneous Lipid Flows Influence Membrane Protein Diffusion". Biophysical Journal 104, nr 2 (styczeń 2013): 426a. http://dx.doi.org/10.1016/j.bpj.2012.11.2372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Maftouni, Negin, Mehryar Amininassab i Mansour Vali. "Physical Properties of an Asymmetric Nanobio Lipid Membrane". Biophysical Journal 104, nr 2 (styczeń 2013): 80a. http://dx.doi.org/10.1016/j.bpj.2012.11.485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kelley, Elizabeth G., Moritz P. K. Frewein, Georg Pabst i Michihiro Nagao. "Nanoscale membrane dynamics in chain asymmetric lipid bilayers". Biophysical Journal 122, nr 3 (luty 2023): 22a. http://dx.doi.org/10.1016/j.bpj.2022.11.346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kim, Siyoung. "Lipid backmapping and its application to membrane builder". Biophysical Journal 122, nr 3 (luty 2023): 422a. http://dx.doi.org/10.1016/j.bpj.2022.11.2287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Rachid Thiam, Abdou. "Regulation of Lipid Droplet Formation by Membrane Tension". Biophysical Journal 114, nr 3 (luty 2018): 562a—563a. http://dx.doi.org/10.1016/j.bpj.2017.11.3076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Amos, Sarah-Beth, Antreas C. Kalli, Jiye Shi i Mark S. P. Sansom. "Multiscale Simulations of Membrane Recognition by Lipid Kinases". Biophysical Journal 114, nr 3 (luty 2018): 613a. http://dx.doi.org/10.1016/j.bpj.2017.11.3753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Li, Feng, R. Venkat Kalyana Sundaram, Jeff Coleman, Shyam S. Krishnakumar, Frederic Pincet i James Rothman. "Munc13 Clusters Capture Vesicles to Lipid Bilayer Membrane". Biophysical Journal 118, nr 3 (luty 2020): 344a. http://dx.doi.org/10.1016/j.bpj.2019.11.1990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Munguía, Irene Jiménez, Arsenii Fedorov, Ivan Meshkov, Yuri Ermakov, Yulia Gorbunova i Valerij Sokolov. "Adsorption and Permeation of Porphyrins through Lipid Membrane". Biophysical Journal 118, nr 3 (luty 2020): 78a. http://dx.doi.org/10.1016/j.bpj.2019.11.598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Drolle, Elizabeth, Norbert Kučerka, Youngjik Choi, John Katsaras i Zoya Leonenko. "Melatonin Counteracts Cholesterol's Effects on Lipid Membrane Structure". Biophysical Journal 104, nr 2 (styczeń 2013): 182a. http://dx.doi.org/10.1016/j.bpj.2012.11.1022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hagerty, Nicholas, Edwin Li i Kalina Hristova. "Integration of Plasma Membrane in Supported Lipid Bilayers". Biophysical Journal 96, nr 3 (luty 2009): 329a. http://dx.doi.org/10.1016/j.bpj.2008.12.1656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii