Gotowa bibliografia na temat „Crowd risk prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Crowd risk prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Crowd risk prediction"
Harihara Subramanian, Gayathri, i Ashish Verma. "Crowd risk prediction in a spiritually motivated crowd". Safety Science 155 (listopad 2022): 105877. http://dx.doi.org/10.1016/j.ssci.2022.105877.
Pełny tekst źródłaLee, Ris S. C., i Roger L. Hughes. "Prediction of human crowd pressures". Accident Analysis & Prevention 38, nr 4 (lipiec 2006): 712–22. http://dx.doi.org/10.1016/j.aap.2006.01.001.
Pełny tekst źródłaFu, Runshan, Yan Huang i Param Vir Singh. "Crowds, Lending, Machine, and Bias". Information Systems Research 32, nr 1 (1.03.2021): 72–92. http://dx.doi.org/10.1287/isre.2020.0990.
Pełny tekst źródłaZhang, Meihua, Yuan Yao i Kefan Xie. "Prediction and Diversion Mechanisms for Crowd Management Based on Risk Rating". Engineering 09, nr 05 (2017): 377–87. http://dx.doi.org/10.4236/eng.2017.95021.
Pełny tekst źródłaZhao, Hui, Runran Miao, Fei Lin i Guoan Zhao. "Risk Score for Prediction of Acute Kidney Injury in Patients with Acute ST-Segment Elevation Myocardial Infarction". Disease Markers 2022 (20.12.2022): 1–7. http://dx.doi.org/10.1155/2022/7493690.
Pełny tekst źródłaXu, Xiaojun, Sen Xiong, Yifeng Huang i Rong Qin. "Prediction of Epidemic Transmission Path and Risk Management Method in Urban Subway". Mathematical Problems in Engineering 2022 (31.05.2022): 1–9. http://dx.doi.org/10.1155/2022/7555251.
Pełny tekst źródłaKondofersky, Ivan, Michael Laimighofer, Christoph Kurz, Norbert Krautenbacher, Julia F. Söllner, Philip Dargatz, Hagen Scherb, Donna P. Ankerst i Christiane Fuchs. "Three general concepts to improve risk prediction: good data, wisdom of the crowd, recalibration". F1000Research 5 (16.11.2016): 2671. http://dx.doi.org/10.12688/f1000research.8680.1.
Pełny tekst źródłaLi, Zhihong, Shiyao Qiu, Xiaoyu Wang i Li Zhao. "Modeling and Simulation of Crowd Pre-Evacuation Decision-Making in Complex Traffic Environments". International Journal of Environmental Research and Public Health 19, nr 24 (12.12.2022): 16664. http://dx.doi.org/10.3390/ijerph192416664.
Pełny tekst źródłaSeyednasrollah, Fatemeh, Devin C. Koestler, Tao Wang, Stephen R. Piccolo, Roberto Vega, Russell Greiner, Christiane Fuchs i in. "A DREAM Challenge to Build Prediction Models for Short-Term Discontinuation of Docetaxel in Metastatic Castration-Resistant Prostate Cancer". JCO Clinical Cancer Informatics, nr 1 (listopad 2017): 1–15. http://dx.doi.org/10.1200/cci.17.00018.
Pełny tekst źródłaShiga, Motoki. "Two-step feature selection for predicting survival time of patients with metastatic castrate resistant prostate cancer". F1000Research 5 (16.11.2016): 2678. http://dx.doi.org/10.12688/f1000research.8201.1.
Pełny tekst źródłaRozprawy doktorskie na temat "Crowd risk prediction"
Chinopfukutwa, Vimbayi Sandra. "Peer Crowd Affiliations as Predictiors of Prosocial and Risky Behaviors Among College Students". Thesis, North Dakota State University, 2019. https://hdl.handle.net/10365/29460.
Pełny tekst źródłaCabarle, Carla. "PREDICTING THE RISK OF FRAUD IN EQUITY CROWDFUNDING OFFERS AND ASSESSING THE WISDOM OF THE CROWD". Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/541453.
Pełny tekst źródłaD.B.A.
Regulation Crowdfunding, enacted in May 2016, is intended to facilitate capital formation in startups and small businesses funded primarily by small investors (Securities and Exchange Commission (SEC), 2016b). This dissertation investigates (1) the risk of fraud in equity crowdfunding offerings and (2) whether investors respond to fraud signals by selecting (rejecting) offers with low (high) fraud risk. Because equity crowdfunding is quite new, no frauds have yet been identified. Therefore, I employ a predictive analytics tool, Benford’s Law, to assess the fraud risk of the offering. I select observable indicators to represent the Fraud Triangle dimensions—incentives, opportunities and rationalization—and test if they predict fraud risk. I also compare offer funding outcomes to my fraud risk assessments to identify if investors’ selections consider fraud risk appropriately. The relaxed auditor assurance and disclosure requirements attracts both honest and dishonest founders, but I find that the risk of fraud is higher in equity crowdfunding offers than in public offerings as reported by other studies. I find that there are several individual fraud indicators and models that explain fraud risk, but these do not predict whether the offer is funded or not (funding outcomes) or the amount that is raised if funded. This dissertation is the first to apply Benford’s Law to equity crowdfunding offers and map fraud attributes to fraud risk and funding outcomes. My dissertation can inform investors, issuers, regulators, intermediaries and practitioners of the high risk of fraud in equity crowdfunding offerings and of several noteworthy fraud indicators.
Temple University--Theses
Gayathri, Harihara. "Macroscopic crowd flow and risk modelling in mass religious gathering". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5630.
Pełny tekst źródłaKsiążki na temat "Crowd risk prediction"
The new Weibull handbook: Reliability & statistical analysis for predicting life, safety, risk, support costs, failures, and forecasting warranty claims, substantiation and accelerated testing, using Weibull, Log normal, crow-AMSAA, probit, and Kaplan-Meier models. Wyd. 5. North Palm Beach, Fla: R.B. Abernethy, 2006.
Znajdź pełny tekst źródłaKulak, Dariusz. Wieloaspektowa metoda oceny stanu gleb leśnych po przeprowadzeniu procesów pozyskania drewna. Publishing House of the University of Agriculture in Krakow, 2017. http://dx.doi.org/10.15576/978-83-66602-28-1.
Pełny tekst źródłaCzęści książek na temat "Crowd risk prediction"
Baranovskiy, Nikolay Viktorovich. "Predicting Forest Fire Numbers Using Deterministic-Probabilistic Approach". W Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks, 89–100. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1867-0.ch004.
Pełny tekst źródłaAnderson, Raymond A. "Business Credit". W Credit Intelligence & Modelling, 121–58. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.003.0004.
Pełny tekst źródłaTay, Yen Pei, Vasaki Ponnusamy i Lam Hong Lee. "Big Data in Telecommunications". W Big Data, 778–92. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9840-6.ch036.
Pełny tekst źródłaTay, Yen Pei, Vasaki Ponnusamy i Lam Hong Lee. "Big Data in Telecommunications". W Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, 67–81. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8505-5.ch004.
Pełny tekst źródłaStreszczenia konferencji na temat "Crowd risk prediction"
Li, Hongjian, i Yan Shao. "Investors' Financing Risk Prediction in Crowd-funding Platform". W 2017 7th International Conference on Education and Management (ICEM 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icem-17.2018.120.
Pełny tekst źródłaMorgan, Jeffrey J., Otto C. Wilson i Prahlad G. Menon. "The Wisdom of Crowds Approach to Influenza-Rate Forecasting". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86559.
Pełny tekst źródłaTeng, Harold Ze Chie, Hongchao Jiang, Xuan Rong Zane Ho, Wei Yang Bryan Lim, Jer Shyuan Ng, Han Yu, Zehui Xiong, Dusit Niyato i Chunyan Miao. "Predictive Analytics for COVID-19 Social Distancing". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/716.
Pełny tekst źródłaSohn, Samuel S., Seonghyeon Moon, Honglu Zhou, Mihee Lee, Sejong Yoon, Vladimir Pavlovic i Mubbasir Kapadia. "Harnessing Fourier Isovists and Geodesic Interaction for Long-Term Crowd Flow Prediction". W Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/185.
Pełny tekst źródłaPavlovski, Martin, Fang Zhou, Nino Arsov, Ljupco Kocarev i Zoran Obradovic. "Generalization-Aware Structured Regression towards Balancing Bias and Variance". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/363.
Pełny tekst źródła