Gotowa bibliografia na temat „Cross-flow heat exchangers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cross-flow heat exchangers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cross-flow heat exchangers"
Alotaibi, Sorour, Mihir Sen, Bill Goodwine i K. T. Yang. "Controllability of cross-flow heat exchangers". International Journal of Heat and Mass Transfer 47, nr 5 (luty 2004): 913–24. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.08.021.
Pełny tekst źródłaSilaipillayarputhur, Karthik. "Transient Response of Cross Flow Heat Exchangers Subjected to Simultaneous Temperature and Flow Perturbations". Applied Mechanics and Materials 799-800 (październik 2015): 665–70. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.665.
Pełny tekst źródłaBury, Tomasz, Jan Składzień i Katarzyna Widziewicz. "Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions". Archives of Thermodynamics 31, nr 4 (1.10.2010): 133–44. http://dx.doi.org/10.2478/v10173-010-0034-5.
Pełny tekst źródłaSaboya, F. E. M., i C. E. S. M. da Costa. "Minimum Irreversibility Criteria for Heat Exchanger Configurations". Journal of Energy Resources Technology 121, nr 4 (1.12.1999): 241–46. http://dx.doi.org/10.1115/1.2795989.
Pełny tekst źródłaYildirim, M., i M. S. Söylemez. "THERMOECONOMICAL OPTIMIZATION OF CROSS-FLOW HEAT EXCHANGERS". Heat Transfer Research 48, nr 12 (2017): 1069–75. http://dx.doi.org/10.1615/heattransres.2016006384.
Pełny tekst źródłaOğulata, R. Tuğrul, Füsun Doba i Tuncay Yilmaz. "Irreversibility analysis of cross flow heat exchangers". Energy Conversion and Management 41, nr 15 (październik 2000): 1585–99. http://dx.doi.org/10.1016/s0196-8904(00)00020-0.
Pełny tekst źródłaZaleski, Tadeusz. "Mathematical modelling of cross-flow heat exchangers". Chemical Engineering Science 42, nr 7 (1987): 1517–26. http://dx.doi.org/10.1016/0009-2509(87)80157-4.
Pełny tekst źródłaSyukran, Syukran. "Kaji efisiensi temperatur penukar panas dengan variasi aliran untuk aplikasi pengering". Jurnal POLIMESIN 16, nr 2 (30.08.2018): 39. http://dx.doi.org/10.30811/jpl.v16i2.562.
Pełny tekst źródłaCabezas-Gómez, Luben, Hélio Aparecido Navarro i José Maria Saiz-Jabardo. "Thermal Performance of Multipass Parallel and Counter-Cross-Flow Heat Exchangers". Journal of Heat Transfer 129, nr 3 (14.06.2006): 282–90. http://dx.doi.org/10.1115/1.2430719.
Pełny tekst źródłaWU, S. Y., Y. R. LI i D. L. ZENG. "EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER". International Journal of Modern Physics B 19, nr 01n03 (30.01.2005): 517–19. http://dx.doi.org/10.1142/s0217979205028943.
Pełny tekst źródłaRozprawy doktorskie na temat "Cross-flow heat exchangers"
Li, Ming. "An experimental and theoretical study of fluidelastic instability in cross flow multi-span heat exchanger tube arrays /". *McMaster only, 1997.
Znajdź pełny tekst źródłaTough, M. C. "A heat transfer model of forced convection, cross flow heat exchangers used in space heating". Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259171.
Pełny tekst źródłaHalim, Mohammed Salim. "Detailed velocity measurements of flow through staggered and in-line tube banks in cross-flow using laser doppler anemometry". Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235574.
Pełny tekst źródłaCole, Brian D. "Transient performance of parallel-flow and cross-flow direct transfer type heat exchangers with a step temperature change on the minimum capacity rate fluid stream. /". Online version of thesis, 1995. http://hdl.handle.net/1850/11924.
Pełny tekst źródłaIngold, Abram M. "Single-pass cross-flow micro-channel heat exchangers for use in organic Rankine cycles /". Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1402175291&sid=9&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaWipplinger, Karl Paul Martin. "Utilising a high pressure, cross flow, stainless steel fintube heat exchanger for direct steam generation from recovered waste heat". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50217.
Pełny tekst źródłaENGLISH ABSTRACT: Around the world the implementation of heat recovery systems is playing an increasingly important role in the engineering inqustry. The recovered energy is utilised in the plants and saves companies millions in expenses per year. Not only is this seen on the grand scale of industry, but also in everyday life, where for instance turbochargers are used to boost the performance of automobiles by utilising the wasted energy expelled along with exhaust gasses. The aim of this project is to investigate a small scale waste heat recovery system, and to determine the optimum method by which to convert the recovered energy into electrical energy, which can be used as a secondary energy source. The research contained in this thesis, centres on the main components and theory needed for the construction of a small scale waste heat recovery system. Also included, is a theoretical analysis concerning the design and construction of the system, utilising researched theory and a simulation program of the recovery system. The simulation is control volume-based and generates property data on the fluid and exhaust gas throughout the heat exchanger. The final design included a finite element stress analysis of certain parts of the system to ensure safe testing at high pressures and temperatures. The final design resulted in a high pressure, cross flow, stainless steel fintube heat exchanger that, by using a continuous combustion unit as energy source and water as the working fluid, reached efficiencies of up to 74% in direct steam generation testing. The tube-side of the heat exchanger was designed to withstand pressures of up to 2MPa (20bar), which is imperative for the implementation of the next phase, where a turbocharger will be connected to the heat exchanger. The completion of this part of the project has paved the way for further development and implementation of the heat recovery system.
AFRIKAANSE OPSOMMING: Die herwinning van energie begin 'n toenemend belangrike rol in die ingenieurs industrie speel. Die herwonne energie word in fabrieke ben ut en spaar maatskappye milj oene aan uitgawes per jaar. Hierdie beginsel word nie net in die grootskaalse nywerhede toegepas nie, maar ook in die allerdaagse lewe, soos byvoorbeeld in voertuie waar turbo-aanjaers gebruik word om die energie-uitset van enjins te verhoog deur bloot gebruik te maak van die verlore energie wat saam met die uitlaatgasse in die atmosfeer gepomp word. Die doel van hierdie projek is om 'n kleinskaalse energieherwinningstelsel te ondersoek en die mees effektiewe metode te vind om die herwinde energie na elektriese energie om te skakel wat as 'n sekondere energiebron gebruik kan word. Die navorsing bevat in die tesis, kyk na al die hoofkomponente en teoretiese kennis wat nodig is vir die konstruksie van 'n kleinskaalse hitteherwinningstelsel. Ook ingesluit is 'n teoretiese analise ten opsigte van die ontwerp en konstruksie van die sisteem. Dit behels die gebruik van nagevorsde teorie saam met 'n simulasie program van die herwinnings stelsel. Die simulasie program is op kontrole volumes gebasseet en genereer uitlaatgas- en water eienskappe soos dit deur die hitteruiler vloei. Die finale ontwerp bevat 'n eindige element spannmgs analise van sekere kritiese komponente in die stelsel om die veilige gebruik van die sisteem by hoe drukke en temperature te verseker. Die finale ontwerp was 'n hoedruk, kruisvloei, vlekvrye staal finbuis hitteruiler. Deur 'n konstante verbrandingseenheid as energiebron te gebruik saam met water as werksvloeier, het die hitteruiler effektiwiteite van tot 74% in direkte stoomgenerasie-toetse bereik. Die hitteruiler is ontwerp om hoe drukke van tot 2MPa (20bar) te hanteer wat baie belangrik is vir die implementasie van die volgende fase van die projek waar 'n turbo-aanjaer aan die stelsel gekoppel sal. Die suksesvolle voltooiing van hierdie fase van die projek het die weg gebaan vir die verdere ontwikkeling en implimentasie van die energieherwinningsstelsel.
Otava, Jiří. "Návrh vzduchotechnického zařízení s ohledem na systém zpětného získávání tepla". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265724.
Pełny tekst źródłaNg, Eton Yat-Tuen, i eton_ng@hotmail com. "Vehicle engine cooling systems: assessment and improvement of wind-tunnel based evaluation methods". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2002. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080422.100014.
Pełny tekst źródłaAliev, Ruslan. "CFD Investigation of Heat Exchangers with Circular and Elliptic Cross-Sectional Channels". Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1452678890.
Pełny tekst źródłaAlbrecht, Daniel David. "DESIGN AND CONSTRUCTION OF HEAT EXCHANGER TEST STAND WITH INITIAL TEST RESULTS". OpenSIUC, 2009. https://opensiuc.lib.siu.edu/theses/109.
Pełny tekst źródłaKsiążki na temat "Cross-flow heat exchangers"
Cabezas-Gómez, Luben, Hélio Aparecido Navarro i José Maria Saíz-Jabardo. Thermal Performance Modeling of Cross-Flow Heat Exchangers. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09671-1.
Pełny tekst źródłaCabezas-Gómez, Luben, Hélio Aparecido Navarro i José Maria Saíz-Jabardo. Thermal Performance Modeling of Cross-Flow Heat Exchangers. Springer, 2014.
Znajdź pełny tekst źródłaBury, Tomasz. Impact of a Medium Flow Maldistribution on a Cross-Flow Heat Exchanger Performance. INTECH Open Access Publisher, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Cross-flow heat exchangers"
Spang, B., i W. Roetzel. "Approximate Equations for the Design of Cross- Flow Heat Exchangers". W Design and Operation of Heat Exchangers, 125–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84450-8_11.
Pełny tekst źródłaMarin, O., S. Petrescu i N. Baran. "Numerical Analysis of Cross-Flow Heat Exchangers in Order to Establish a New Design Method". W Design and Operation of Heat Exchangers, 135–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84450-8_12.
Pełny tekst źródłaTaler, Dawid. "Developed Turbulent Fluid Flow in Ducts with a Circular Cross-Section". W Numerical Modelling and Experimental Testing of Heat Exchangers, 173–256. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91128-1_6.
Pełny tekst źródłaTaler, Dawid. "Mathematical Modelling of Tube Cross-Flow Heat Exchangers Operating in Steady-State Conditions". W Numerical Modelling and Experimental Testing of Heat Exchangers, 339–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91128-1_10.
Pełny tekst źródłaHofmann, A., S. Wild, L. R. Oellrich i K. Schubert. "Investigations on Cross Flow Micro Heat Exchangers for Operation with Lhe". W Advances in Cryogenic Engineering, 1639–46. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_201.
Pełny tekst źródłaLiu, Xuelai, Yong’an Li, Jizhi Li, Hongxing Yang i Hengliang Chen. "Efficiency Analysis of Cross-Flow Plate Heat Exchanger for Indirect Evaporative Cooling". W Sustainability in Energy and Buildings, 255–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03454-1_26.
Pełny tekst źródłaVishwanath, Kore Someshwar, i S. Balaguru. "Modeling of Flow-Induced Vibration Response of Heat Exchanger Tube with Fixed Supports in Cross Flow". W Lecture Notes in Mechanical Engineering, 621–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3631-1_59.
Pełny tekst źródłaPaïdoussis, M. P., S. J. Price i N. W. Mureithi. "Chaotic Oscillations of a Loosely Supported Tube in a Heat-Exchanger Array in Cross-Flow". W IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, 483–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-5320-1_47.
Pełny tekst źródłaBhatt, Yogesh Pradeep, Ashutosh Arun Joglekar i Dattatray B. Hulwan. "Thermal Design and Performance Analysis of a Cross Flow Heat Exchanger Using Plain and Almond Dimple Tubes". W Techno-Societal 2018, 725–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16962-6_73.
Pełny tekst źródłaSallam, Omar Khaled, Ahmad Taher Azar, Amr Guaily i Hossam Hassan Ammar. "Tuning of PID Controller Using Particle Swarm Optimization for Cross Flow Heat Exchanger Based on CFD System Identification". W Advances in Intelligent Systems and Computing, 300–312. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31129-2_28.
Pełny tekst źródłaStreszczenia konferencji na temat "Cross-flow heat exchangers"
Fakheri, Ahmad. "Thermal Efficiency of the Cross Flow Heat Exchangers". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13575.
Pełny tekst źródłaKelly, Kevin W., Andrew McCandless, Christoffe Marques, Ryan A. Turner i Shariar Motakef. "High Performance Micro-Channel Cross Flow Heat Exchangers". W ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75249.
Pełny tekst źródłaLankalapalli, Kiran, Ahmed ElSawy i Stephen Idem. "Performance Analysis of Multi-Pass Cross-Flow Heat Exchangers". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87049.
Pełny tekst źródłaSilaipillayarputhur, Karthik, i Stephen A. Idem. "Transient Response of a Cross Flow Heat Exchanger Subjected to Temperature and Flow Perturbations". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52562.
Pełny tekst źródłaNonino, Carlo, i Stefano Savino. "NUMERICAL PREDICTION OF FLUID FLOW AND HEAT TRANSFER IN CROSS-FLOW MICRO HEAT EXCHANGERS". W ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.640.
Pełny tekst źródłaNonino, Carlo, i Stefano Savino. "NUMERICAL PREDICTION OF FLUID FLOW AND HEAT TRANSFER IN CROSS-FLOW MICRO HEAT EXCHANGERS". W ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.cht-7.640.
Pełny tekst źródłaDasgupta, Sarbadaman, Faisal A. Siddiqui, Md Abdul Quaiyum, Serena A. Al-Obaidi i Amir Fartaj. "Experimental Study on Air Cooling via a Multiport Mesochannel Cross-Flow Heat Exchanger". W ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58257.
Pełny tekst źródłaZhang, Hengyun, Zhaoqiang Wang i Yansong Wang. "Unit Cell Model Formulation and Thermal Performance Analysis for Cross-Flow Heat Exchanger". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6711.
Pełny tekst źródłaMandel, Raphael, Martinus Arie, Amir Shooshtari i Michael Ohadi. "A Heat Spreading Model for Double-Sided, Cross-Flow, Manifold-Microchannel Heat Exchangers". W 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2018. http://dx.doi.org/10.1109/itherm.2018.8419553.
Pełny tekst źródłaDong, Wei, Shengbao Zhang, Zhiqiang Guo i Xiao Yu. "Experimental Investigation on the Flow and Heat Transfer of an Air-Air Primary Surface Heat Exchanger". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75991.
Pełny tekst źródłaRaporty organizacyjne na temat "Cross-flow heat exchangers"
Kim, Man-Hoe, Piotr A. Domanski i David A. Didion. Performance of R-22 alternative refrigerants in a system with cross-flow and counter-flow heat exchangers. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5945.
Pełny tekst źródłaBimal K. Kad. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement. Office of Scientific and Technical Information (OSTI), wrzesień 2006. http://dx.doi.org/10.2172/894894.
Pełny tekst źródłaBimal K. Kad. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement. Office of Scientific and Technical Information (OSTI), lipiec 2006. http://dx.doi.org/10.2172/888920.
Pełny tekst źródłaBimal K. Kad. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/881909.
Pełny tekst źródłaBimal K. Kad. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/881980.
Pełny tekst źródłaBimal K. Kad. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT. Office of Scientific and Technical Information (OSTI), marzec 2004. http://dx.doi.org/10.2172/823796.
Pełny tekst źródłaBimal K. Kad. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT. Office of Scientific and Technical Information (OSTI), maj 2004. http://dx.doi.org/10.2172/828172.
Pełny tekst źródłaBimal Kad. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement. Office of Scientific and Technical Information (OSTI), wrzesień 2007. http://dx.doi.org/10.2172/962926.
Pełny tekst źródłaBimal K. Kad. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT. Office of Scientific and Technical Information (OSTI), luty 2005. http://dx.doi.org/10.2172/837874.
Pełny tekst źródłaBimal K. Kad. CROSS-ROLL FLOW FORMING OF ODS ALLOY HEAT EXCHANGER TUBES FOR HOOP CREEP ENHANCEMENT. Office of Scientific and Technical Information (OSTI), sierpień 2004. http://dx.doi.org/10.2172/837878.
Pełny tekst źródła