Artykuły w czasopismach na temat „Cross-domain fault diagnosis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cross-domain fault diagnosis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Xiaodong, Feng Liu i Dongdong Zhao. "Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation". Sensors 20, nr 13 (4.07.2020): 3753. http://dx.doi.org/10.3390/s20133753.
Pełny tekst źródłaZhang, Yongchao, Zhaohui Ren i Shihua Zhou. "A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions". Shock and Vibration 2020 (24.07.2020): 1–14. http://dx.doi.org/10.1155/2020/8850976.
Pełny tekst źródłaMeng, Yu, Jianping Xuan, Long Xu i Jie Liu. "Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis". Machines 10, nr 4 (30.03.2022): 245. http://dx.doi.org/10.3390/machines10040245.
Pełny tekst źródłaChang, Hong-Chan, Ren-Ge Liu, Chen-Cheng Li i Cheng-Chien Kuo. "Fault Diagnosis of Induction Motors under Limited Data for across Loading by Residual VGG-Based Siamese Network". Applied Sciences 14, nr 19 (4.10.2024): 8949. http://dx.doi.org/10.3390/app14198949.
Pełny tekst źródłaLi, Dan, Yudong Xu, Yuxun Zhou, Chao Gou i See-Kiong Ng. "Cross Domain Data Generation for Smart Building Fault Detection and Diagnosis". Mathematics 10, nr 21 (26.10.2022): 3970. http://dx.doi.org/10.3390/math10213970.
Pełny tekst źródłaWang, Yuanfei, Shihao Li, Feng Jia i Jianjun Shen. "Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings". Machines 10, nr 5 (29.04.2022): 326. http://dx.doi.org/10.3390/machines10050326.
Pełny tekst źródłaZhang, Long, Hao Zhang, Qian Xiao, Lijuan Zhao, Yanqing Hu, Haoyang Liu i Yu Qiao. "Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis". Sensors 22, nr 24 (13.12.2022): 9759. http://dx.doi.org/10.3390/s22249759.
Pełny tekst źródłaJang, Gye-Bong, i Sung-Bae Cho. "Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis". IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–17. http://dx.doi.org/10.1109/tim.2022.3204093.
Pełny tekst źródłaShang, Qianming, Tianyao Jin i Mingsheng Chen. "A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs". Journal of Marine Science and Engineering 12, nr 8 (1.08.2024): 1304. http://dx.doi.org/10.3390/jmse12081304.
Pełny tekst źródłaWang, Huaqing, Zhitao Xu, Xingwei Tong i Liuyang Song. "Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers". Sensors 23, nr 4 (14.02.2023): 2137. http://dx.doi.org/10.3390/s23042137.
Pełny tekst źródłaLiu, Guokai, Weiming Shen, Liang Gao i Andrew Kusiak. "Automated broad transfer learning for cross-domain fault diagnosis". Journal of Manufacturing Systems 66 (luty 2023): 27–41. http://dx.doi.org/10.1016/j.jmsy.2022.11.003.
Pełny tekst źródłaZhang, Hongpeng, Xinran Wang, Cunyou Zhang, Wei Li, Jizhe Wang, Guobin Li i Chenzhao Bai. "Dynamic Condition Adversarial Adaptation for Fault Diagnosis of Wind Turbine Gearbox". Sensors 23, nr 23 (23.11.2023): 9368. http://dx.doi.org/10.3390/s23239368.
Pełny tekst źródłaBai, Jie, Xuan Liu, Bingjie Dou, Xiaohui Yang, Bo Chen, Yaowen Zhang, Jiayu Zhang, Zhenzhong Wang i Hongbo Zou. "A Fault Diagnosis Method for Pumped Storage Unit Stator Based on Improved STFT-SVDD Hybrid Algorithm". Processes 12, nr 10 (30.09.2024): 2126. http://dx.doi.org/10.3390/pr12102126.
Pełny tekst źródłaChen, Zhuyun, Guolin He, Jipu Li, Yixiao Liao, Konstantinos Gryllias i Weihua Li. "Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery". IEEE Transactions on Instrumentation and Measurement 69, nr 11 (listopad 2020): 8702–12. http://dx.doi.org/10.1109/tim.2020.2995441.
Pełny tekst źródłaLiu, Fuqiang, Wenlong Deng, Chaoqun Duan, Yi Qin, Jun Luo i Huayan Pu. "Duplex adversarial domain discriminative network for cross-domain partial transfer fault diagnosis". Knowledge-Based Systems 279 (listopad 2023): 110960. http://dx.doi.org/10.1016/j.knosys.2023.110960.
Pełny tekst źródłaLiu, Fuzheng, Faye Zhang, Xiangyi Geng, Lin Mu, Lei Zhang, Qingmei Sui, Lei jia, Mingshun Jiang i Junwei Gao. "Structural discrepancy and domain adversarial fusion network for cross-domain fault diagnosis". Advanced Engineering Informatics 58 (październik 2023): 102217. http://dx.doi.org/10.1016/j.aei.2023.102217.
Pełny tekst źródłaZhang, Chao, Peng Du, Dingyu Zhou, Zhijie Dong, Shilie He i Zhenwei Zhou. "Fault Diagnosis of Low-Noise Amplifier Circuit Based on Fusion Domain Adaptation Method". Actuators 13, nr 9 (23.09.2024): 379. http://dx.doi.org/10.3390/act13090379.
Pełny tekst źródłaZhou, Hongdi, Tao Huang, Xixing Li i Fei Zhong. "Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning". Advances in Mechanical Engineering 14, nr 11 (listopad 2022): 168781322211357. http://dx.doi.org/10.1177/16878132221135740.
Pełny tekst źródłaZhao, Chao, i Weiming Shen. "Dual adversarial network for cross-domain open set fault diagnosis". Reliability Engineering & System Safety 221 (maj 2022): 108358. http://dx.doi.org/10.1016/j.ress.2022.108358.
Pełny tekst źródłaZheng, Huailiang, Rixin Wang, Yuantao Yang, Jiancheng Yin, Yongbo Li, Yuqing Li i Minqiang Xu. "Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review". IEEE Access 7 (2019): 129260–90. http://dx.doi.org/10.1109/access.2019.2939876.
Pełny tekst źródłaChao, Ko-Chieh, Chuan-Bi Chou i Ching-Hung Lee. "Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data". Sensors 22, nr 12 (16.06.2022): 4540. http://dx.doi.org/10.3390/s22124540.
Pełny tekst źródłaFeiyan Fan, Feiyan Fan, Jiazhen Hou Feiyan Fan i Tanghuai Fan Jiazhen Hou. "Fault Diagnosis under Varying Working Conditions with Domain Adversarial Capsule Networks". 電腦學刊 33, nr 3 (czerwiec 2022): 135–46. http://dx.doi.org/10.53106/199115992022063303011.
Pełny tekst źródłaQin, Y. X., Y. Hong, J. Y. Long, Z. Yang, Y. W. Huang i C. Li. "Attitude data-based deep transfer capsule network for intelligent fault diagnosis of delta 3D printers". Journal of Physics: Conference Series 2184, nr 1 (1.03.2022): 012017. http://dx.doi.org/10.1088/1742-6596/2184/1/012017.
Pełny tekst źródłaKim, Taeyun, i Jangbom Chai. "Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing". Sensors 21, nr 15 (21.07.2021): 4970. http://dx.doi.org/10.3390/s21154970.
Pełny tekst źródłaZhang, Yongchao, Zhaohui Ren, Ke Feng, Kun Yu, Michael Beer i Zheng Liu. "Universal source-free domain adaptation method for cross-domain fault diagnosis of machines". Mechanical Systems and Signal Processing 191 (maj 2023): 110159. http://dx.doi.org/10.1016/j.ymssp.2023.110159.
Pełny tekst źródłaWang, Yu, Jie Gao, Wei Wang, Xu Yang i Jinsong Du. "Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift". Mechanical Systems and Signal Processing 212 (kwiecień 2024): 111295. http://dx.doi.org/10.1016/j.ymssp.2024.111295.
Pełny tekst źródłaZheng, Huailiang, Yuantao Yang, Jiancheng Yin, Yuqing Li, Rixin Wang i Minqiang Xu. "Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing". IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–11. http://dx.doi.org/10.1109/tim.2020.3016068.
Pełny tekst źródłaZou, Yingyong, Wenzhuo Zhao, Tao Liu, Xingkui Zhang i Yaochen Shi. "Research on High-Speed Train Bearing Fault Diagnosis Method Based on Domain-Adversarial Transfer Learning". Applied Sciences 14, nr 19 (26.09.2024): 8666. http://dx.doi.org/10.3390/app14198666.
Pełny tekst źródłaXie, Fengyun, Gang Li, Qiuyang Fan, Qian Xiao i Shengtong Zhou. "Optimizing and Analyzing Performance of Motor Fault Diagnosis Algorithms for Autonomous Vehicles via Cross-Domain Data Fusion". Processes 11, nr 10 (28.09.2023): 2862. http://dx.doi.org/10.3390/pr11102862.
Pełny tekst źródłaChen, Zihan, i Chao He. "Transformer-Based Unsupervised Cross-Sensor Domain Adaptation for Electromechanical Actuator Fault Diagnosis". Machines 11, nr 1 (11.01.2023): 102. http://dx.doi.org/10.3390/machines11010102.
Pełny tekst źródłaZhang, Yizong, Shaobo Li, Ansi Zhang, Chuanjiang Li i Ling Qiu. "A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets". Entropy 24, nr 9 (14.09.2022): 1295. http://dx.doi.org/10.3390/e24091295.
Pełny tekst źródłaWei, Yuqian. "Bearing fault diagnosis based on XWT-CEEMD noise reduction". Journal of Physics: Conference Series 2196, nr 1 (1.02.2022): 012035. http://dx.doi.org/10.1088/1742-6596/2196/1/012035.
Pełny tekst źródłaHa, Jong Moon, i Olga Fink. "Domain knowledge-informed synthetic fault sample generation with health data map for cross-domain planetary gearbox fault diagnosis". Mechanical Systems and Signal Processing 202 (listopad 2023): 110680. http://dx.doi.org/10.1016/j.ymssp.2023.110680.
Pełny tekst źródłaXiao, Zhiguo, Dongni Li, Chunguang Yang i Wei Chen. "Fault Diagnosis Method of Special Vehicle Bearing Based on Multi-Scale Feature Fusion and Transfer Adversarial Learning". Sensors 24, nr 16 (10.08.2024): 5181. http://dx.doi.org/10.3390/s24165181.
Pełny tekst źródłaMontesuma, Eduardo Fernandes, Michela Mulas, Francesco Corona i Fred-Maurice Ngole Mboula. "Cross-domain fault diagnosis through optimal transport for a CSTR process". IFAC-PapersOnLine 55, nr 7 (2022): 946–51. http://dx.doi.org/10.1016/j.ifacol.2022.07.566.
Pełny tekst źródłaTian, Jilun, Jiusi Zhang, Yuchen Jiang, Shimeng Wu, Hao Luo i Shen Yin. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis". Reliability Engineering & System Safety 243 (marzec 2024): 109891. http://dx.doi.org/10.1016/j.ress.2023.109891.
Pełny tekst źródłaLi, Guofa, Shaoyang Liu, Jialong He, Liang Wang, Chenchen Wu i Chenhui Qian. "A multi-domain adversarial transfer network for cross domain fault diagnosis under imbalanced data". Engineering Applications of Artificial Intelligence 136 (październik 2024): 108948. http://dx.doi.org/10.1016/j.engappai.2024.108948.
Pełny tekst źródłaWen, Weigang, Yihao Bai i Weidong Cheng. "Generative Adversarial Learning Enhanced Fault Diagnosis for Planetary Gearbox under Varying Working Conditions". Sensors 20, nr 6 (18.03.2020): 1685. http://dx.doi.org/10.3390/s20061685.
Pełny tekst źródłaShen, Bingbing, Min Zhang, Le Yao i Zhihuan Song. "Novel Triplet Loss-Based Domain Generalization Network for Bearing Fault Diagnosis with Unseen Load Condition". Processes 12, nr 5 (26.04.2024): 882. http://dx.doi.org/10.3390/pr12050882.
Pełny tekst źródłaShe, Daoming, Zhichao Yang, Yudan Duan, Xiaoan Yan, Jin Chen i Yaoming Li. "A meta transfer learning method for gearbox fault diagnosis with limited data". Measurement Science and Technology 35, nr 8 (9.05.2024): 086114. http://dx.doi.org/10.1088/1361-6501/ad4665.
Pełny tekst źródłaZhong, Zhidan, Zhihui Zhang, Yunhao Cui, Xinghui Xie i Wenlu Hao. "Failure Mechanism Information-Assisted Multi-Domain Adversarial Transfer Fault Diagnosis Model for Rolling Bearings under Variable Operating Conditions". Electronics 13, nr 11 (30.05.2024): 2133. http://dx.doi.org/10.3390/electronics13112133.
Pełny tekst źródłaAn, Jing, Ping Ai i Dakun Liu. "Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning". Shock and Vibration 2020 (20.03.2020): 1–14. http://dx.doi.org/10.1155/2020/4676701.
Pełny tekst źródłaZhai, Lubin, Xiufeng Wang, Zeyiwen Si i Zedong Wang. "A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum". Sensors 24, nr 11 (29.05.2024): 3500. http://dx.doi.org/10.3390/s24113500.
Pełny tekst źródłaXu, Shu, Jian Ma i Dengwei Song. "Open-set Federated Adversarial Domain Adaptation Based Cross-domain Fault Diagnosis". Measurement Science and Technology, 13.07.2023. http://dx.doi.org/10.1088/1361-6501/ace734.
Pełny tekst źródłaJia, Feng, Yuanfei Wang, Jianjun Shen, Lifei Hao i Zhaoyu Jiang. "Stepwise feature norm network with adaptive weighting for open set cross-domain intelligent fault diagnosis of bearings". Measurement Science and Technology, 9.02.2024. http://dx.doi.org/10.1088/1361-6501/ad282f.
Pełny tekst źródłaLi, Can, Guangbin Wang, Shubiao Zhao, Zhixian Zhong i Ying Lv. "Cross-domain manifold structure preservation for transferable and cross-machine fault diagnosis". Journal of Vibroengineering, 22.08.2024. http://dx.doi.org/10.21595/jve.2024.24067.
Pełny tekst źródłaMao, Xiaodong. "Cross domain fault diagnosis method based on MLP-mixer network". Journal of Measurements in Engineering, 30.10.2023. http://dx.doi.org/10.21595/jme.2023.23460.
Pełny tekst źródłaWang, Pei, Jie Liu, Jianzhong Zhou, Ran Duan i Wei Jiang. "Cross-domain fault diagnosis of rotating machinery based on graph feature extraction". Measurement Science and Technology, 9.11.2022. http://dx.doi.org/10.1088/1361-6501/aca16f.
Pełny tekst źródłaLu, Weikai, Haoyi Fan, Kun Zeng, Zuoyong Li i Jian Chen. "Self‐supervised domain adaptation for cross‐domain fault diagnosis". International Journal of Intelligent Systems, 2.09.2022. http://dx.doi.org/10.1002/int.23026.
Pełny tekst źródłaLiao, Yixiao, Ruyi Huang, Jipu Li, Zhuyun Chen i Weihua Li. "Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis". Chinese Journal of Mechanical Engineering 34, nr 1 (4.06.2021). http://dx.doi.org/10.1186/s10033-021-00566-3.
Pełny tekst źródła