Gotowa bibliografia na temat „Crop parameter”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Crop parameter”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Crop parameter"
Wijesingha, Jayan, Supriya Dayananda, Michael Wachendorf i Thomas Astor. "Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters". Sensors 21, nr 8 (20.04.2021): 2886. http://dx.doi.org/10.3390/s21082886.
Pełny tekst źródłaWallach, Daniel, Bruno Goffinet, Jacques-Eric Bergez, Philippe Debaeke, Delphine Leenhardt i Jean-Noël Aubertot. "Parameter Estimation for Crop Models". Agronomy Journal 93, nr 4 (lipiec 2001): 757–66. http://dx.doi.org/10.2134/agronj2001.934757x.
Pełny tekst źródłaStanghellini, C., i W. Th M. van Meurs. "CROP TRANSPIRATION: A GREENHOUSE CLIMATE CONTROL PARAMETER". Acta Horticulturae, nr 245 (sierpień 1989): 384–88. http://dx.doi.org/10.17660/actahortic.1989.245.51.
Pełny tekst źródłaJacobs, Adrie F. G., i John H. Van Boxel. "Computational parameter estimation for a maize crop". Boundary-Layer Meteorology 42, nr 3 (luty 1988): 265–79. http://dx.doi.org/10.1007/bf00123816.
Pełny tekst źródłaTremblay, Marie, i Daniel Wallach. "Comparison of parameter estimation methods for crop models". Agronomie 24, nr 6-7 (wrzesień 2004): 351–65. http://dx.doi.org/10.1051/agro:2004033.
Pełny tekst źródłaT. Zhai, R. H. Mohtar, F. El-Awar, W. Jabre i J. J. Volenec. "PARAMETER ESTIMATION FOR PROCESS-ORIENTED CROP GROWTH MODELS". Transactions of the ASAE 47, nr 6 (2004): 2109–19. http://dx.doi.org/10.13031/2013.17796.
Pełny tekst źródłaManoharan, Dr Samuel. "Supervised Learning for Microclimatic parameter Estimation in a Greenhouse environment for productive Agronomics". September 2020 2, nr 3 (17.07.2020): 170–76. http://dx.doi.org/10.36548/jaicn.2020.3.004.
Pełny tekst źródłaZhao, Xia, Xingchuan Wang, Guangchao Cao, Kelong Chen, Wenjia Tang i Zhijun Zhang. "Crop Identification by Using Seasonal Parameters Extracted from Time Series Landsat Images in a Mountainous Agricultural County of Eastern Qinghai Province, China". Journal of Agricultural Science 9, nr 4 (14.03.2017): 116. http://dx.doi.org/10.5539/jas.v9n4p116.
Pełny tekst źródłaBahrami, Hazhir, Saeid Homayouni, Abdolreza Safari, Sayeh Mirzaei, Masoud Mahdianpari i Omid Reisi-Gahrouei. "Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations". Agronomy 11, nr 7 (3.07.2021): 1363. http://dx.doi.org/10.3390/agronomy11071363.
Pełny tekst źródłaZeng, Wenzhi, Yuchao Lu, Amit Kumar Srivastava, Thomas Gaiser i Jiesheng Huang. "Parameter Sensitivity and Uncertainty of Radiation Interception Models for Intercropping System". Ecological Chemistry and Engineering S 27, nr 3 (1.09.2020): 437–56. http://dx.doi.org/10.2478/eces-2020-0028.
Pełny tekst źródłaRozprawy doktorskie na temat "Crop parameter"
Perkins, Seth A. "Crop model review and sweet sorghum crop model parameter development". Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/14037.
Pełny tekst źródłaDepartment of Biological and Agricultural Engineering
Kyle Douglas-Mankin
Opportunities for alternative biofuel feedstocks are widespread for a number of reasons: increased environmental and economic concerns over corn production and processing, limitations in the use of corn-based ethanol to 57 billion L (15 billion gal) by the Energy Independence and Security Act (US Congress, 2007), and target requirements of 136 billion L (36 billion gal) of renewable fuel production by 2022. The objective of this study was to select the most promising among currently available crop models that have the potential to model sweet sorghum biomass production in the central US, specifically Kansas, Oklahoma, and Texas, and to develop and test sweet sorghum crop parameters for this model. Five crop models were selected (CropSyst, CERE-Sorghum, APSIM, ALMANAC, and SORKAM), and the models were compared based on ease of use, model support, and availability of inputs and outputs from sweet sorghum biomass data and literature. After reviewing the five models, ALMANAC was selected as the best suited for the development and testing of sweet sorghum crop parameters. The results of the model comparison show that more data are needed about sweet sorghum physiological development stages and specific growth/development factors before the other models reviewed in this study can be readily used for sweet sorghum crop modeling. This study used a unique method to calibrate the sweet sorghum crop parameter development site. Ten years of crop performance data (Corn and Grain Sorghum) for Kansas Counties (Riley and Ellis) were used to select an optimum soil water (SW) estimation method (Saxton and Rawls, Ritchie et al., and a method that added 0.01 m m [superscript]-1 to the minimum SW value given in the SSURGO soil database) and evapotranspiration (ET) method (Penman-Montieth, Priestley-Taylor, and Hargraeves and Samani) combination for use in the sweet sorghum parameter development. ALMANAC general parameters for corn and grain sorghum were used for the calibration/selection of the SW/ET combination. Variations in the harvest indexes were used to simulate variations in geo-climate region grain yield. A step through comparison method was utilized to select the appropriate SW/ET combination. Once the SW/ET combination was selected the combination was used to develop the sweet sorghum crop parameters. Two main conclusions can be drawn from the sweet sorghum crop parameter development study. First, the combination of Saxton and Rawls (2006) and Priestley-Taylor (1972) (SR-PT) methods has the potential for wide applicability in the US Central Plains for simulating grain yields using ALMANAC. Secondly, from the development of the sweet sorghum crop model parameters, ALMANAC modeled biomass yields with reasonable accuracy; differences from observed biomass values ranged from 0.89 to 1.76 Mg ha [superscript]-1 (2.8 to 9.8%) in Kansas (Riley County), Oklahoma (Texas County), and Texas (Hale County). Future research for sweet sorghum physiology, Radiation Use Efficiency/Vapor Pressure Deficit relationships, and weather data integration would be useful in improving sweet sorghum biomass modeling.
Lamsal, Abhishes. "Crop model parameter estimation and sensitivity analysis for large scale data using supercomputers". Diss., Kansas State University, 2016. http://hdl.handle.net/2097/34576.
Pełny tekst źródłaDepartment of Agronomy
Stephen M. Welch
Global crop production must be doubled by 2050 to feed 9 billion people. Novel crop improvement methods and management strategies are the sine qua non for achieving this goal. This requires reliable quantitative methods for predicting the behavior of crop cultivars in novel, time-varying environments. In the last century, two different mathematical prediction approaches emerged (1) quantitative genetics (QG) and (2) ecophysiological crop modeling (ECM). These methods are completely disjoint in terms of both their mathematics and their strengths and weaknesses. However, in the period from 1996 to 2006 a method for melding them emerged to support breeding programs. The method involves two steps: (1) exploiting ECM’s to describe the intricate, dynamic and environmentally responsive biological mechanisms determining crop growth and development on daily/hourly time scales; (2) using QG to link genetic markers to the values of ECM constants (called genotype-specific parameters, GSP’s) that encode the responses of different varieties to the environment. This can require huge amounts of computation because ECM’s have many GSP’s as well as site-specific properties (SSP’s, e.g. soil water holding capacity). Moreover, one cannot employ QG methods, unless the GSP’s from hundreds to thousands of lines are known. Thus, the overall objective of this study is to identify better ways to reduce the computational burden without minimizing ECM predictability. The study has three parts: (1) using the extended Fourier Amplitude Sensitivity Test (eFAST) to globally identify parameters of the CERES-Sorghum model that require accurate estimation under wet and dry environments; (2) developing a novel estimation method (Holographic Genetic Algorithm, HGA) applicable to both GSP and SSP estimation and testing it with the CROPGRO-Soybean model using 182 soybean lines planted in 352 site-years (7,426 yield observations); and (3) examining the behavior under estimation of the anthesis data prediction component of the CERES-Maize model. The latter study used 5,266 maize Nested Associated Mapping lines and a total 49,491 anthesis date observations from 11 plantings. Three major problems were discovered that challenge the ability to link QG and ECM’s: 1) model expressibility, 2) parameter equifinality, and 3) parameter instability. Poor expressibility is the structural inability of a model to accurately predict an observation. It can only be solved by model changes. Parameter equifinality occurs when multiple parameter values produce equivalent model predictions. This can be solved by using eFAST as a guide to reduce the numbers of interacting parameters and by collecting additional data types. When parameters are unstable, it is impossible to know what values to use in environments other than those used in calibration. All of the methods that will have to be applied to solve these problems will expand the amount of data used with ECM’s. This will require better optimization methods to estimate model parameters efficiently. The HGA developed in this study will be a good foundation to build on. Thus, future research should be directed towards solving these issues to enable ECM’s to be used as tools to support breeders, farmers, and researchers addressing global food security issues.
Coppa, Isabel Patricia Maria, i Isabel coppa@csw com au. "The use of remote sensing data for broad acre grain crop monitoring in Southeast Australia". RMIT University. Mathematical and Geospatial Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070201.095831.
Pełny tekst źródłaAbebe, Yibekal Alemayehu. "Managing the soil water balance of hot pepper (Capsicum annuum L.) to improve water productivity". Thesis, University of Pretoria, 2010. http://hdl.handle.net/2263/25257.
Pełny tekst źródłaThesis (PhD)--University of Pretoria, 2010.
Plant Production and Soil Science
unrestricted
Rabe, Nicole J., i University of Lethbridge Faculty of Arts and Science. "Remote sensing of crop biophysical parameters for site-specific agriculture". Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2003, 2003. http://hdl.handle.net/10133/195.
Pełny tekst źródłaxiv, 194 leaves : ill. (some col.) ; 29 cm.
Jalali-Farahani, Hamid Reza 1960. "Crop water stress parameters for turfgrass and their environmental dependability". Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/191950.
Pełny tekst źródłaBurkart, Andreas [Verfasser]. "Multitemporal assessment of crop parameters using multisensorial flying platforms / Andreas Burkart". Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1096330075/34.
Pełny tekst źródłaVarella, Hubert Vincent. "Inversion d’un modèle de culture pour estimer spatialement les propriétés des sols et améliorer la prédiction de variables agro-environnementales". Thesis, Avignon, 2009. http://www.theses.fr/2009AVIG0638/document.
Pełny tekst źródłaDynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters,especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless,observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In my work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, I started my study with a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, I chose a Bayesian data assimilation method (because I have prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prio rinformation and the result with the posterior information provided by the Bayesian data assimilation method. The result of the parameter estimation show that the whole set of parameter has a better quality of estimation when observations on sugar beet are assimilated. At the same time, global sensitivity analysis of the observed variables to the 7 soil parameters have been performed, allowing me to build a criterion based on sensitivity indices (provided by the global sensitivity analysis) able to rank the parameters with respect to their quality of estimate. This criterion constitutes an interesting tool for determining which parameters it is possible to estimate to reduce probably the uncertainties on the predictions. The prediction of the crop behaviour when estimating the soil parameters is then studied. Indeed, the quality of prediction of agro-environmental variables of the STICS crop model (yield, protein of the grain and nitrogen balance at harvest) is determined by comparing the result of the prediction using the prior information on the parameters and the result using the posterior information. As for the estimation of soil parameters, the prediction of the variable is made on different climatic and agronomic conditions. According to the result of parameter estimation, assimilating observations on sugar beet lead to a better quality ofprediction of the variables than observations on wheat. It was also shown that the number ofcrop seasons observed and the number of observations improve the quality of the prediction
Maqrot, Sara. "Méthodes d'optimisation combinatoire en programmation mathématique : Application à la conception des systèmes de verger-maraîcher". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30131.
Pełny tekst źródłaMixed fruit-vegetable cropping systems (MFVCS) are a promising way of ensuring environmentally sustainable agricultural production systems in response to the challenge of being able to fulfill local market requirements. They combine productions and make a better use of biodiversity. These agroforestry systems are based on a complex set of interactions modifying the utilization of light, water and nutrients. Thus, designing such systems requires to optimize the use of these resources : by maximizing positive interactions (facilitations) and minimizing negative ones (competitions). To reach these objectives, the system's design has to include the spatial and temporal dimensions, taking into account the evolution of above- and belowground interactions over a time horizon. For that, we define the MFVCAP using a discrete representation of the land and the interactions between vegetable crops and fruit trees. We formulate the problem as three models : binary quadratic program (BQP), mixed integer linear programming (MILP) and binary linear programming (01LP). We explore large models using exact solvers. The limits of exact methods in solving the MFVCS problem show the need for approximate methods, able to solve a large-scale system with solutions of good quality in reasonable time, which could be used in interactive design with farmers and advisers. We have implemented a C++ open-source solver, called baryonyx, which is a parallel version of a (generalized) Wedelin heuristic. We used a sensitivity analysis method to find useful continuous parameters. Once found, we fixed other parameters and let a genetic optimization algorithm using derivatives adjust the useful ones in order to get the best solutions for a given time limit. The optimized configuration could be used to solve larger instances of the same problem type. Baryonyx got competitive results compared to state-of-the-art exact and approximate solvers on crew and bus driver scheduling problems expressed as set partitioning problems. The results are less convincing on MFVCS but still able to produce valid solutions on large instances
Portz, Gustavo. "Use of crop canopy sensors in the measurement of sugarcane parameters aiming site-specific nitrogen fertilization management". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-17092015-101022/.
Pełny tekst źródłaSensores de dossel tem se apresentado como uma nova ferramenta para a predição espacialmente localizada, em tempo real, de forma indireta e indestrutiva da biomassa vegetal e extração de nitrogênio (N) pelas culturas como base para a aplicação de fertilizantes nitrogenados em taxas variáveis. Sensores baseados na combinação de faixas específicas de reflectância do espectro eletromagnético constituem a grande maioria dos sensores de dossel sendo este princípio já validado para uso em muitas culturas. Alternativamente a este conceito, a medição da altura do dossel cultural com o uso de sensor ultrassónico se apresenta como uma alternativa para a estimativa de biomassa vegetal. Com base nisso o objetivo desta tese foi de validar e aperfeiçoar sistemas sensores para a automação do diagnóstico visando à aplicação de fertilizante nitrogenado em função da necessidade da cana-de-açúcar. Para tanto, foi necessário: 1) validar a previa calibração feita ao sensor de reflectância (PORTZ et al., 2012) assim como estabelecer o melhor momento para uso do sensor na cultura; 2) ensaiar o uso do sensor em faixas comparativas entre taxa fixa e variável testando algoritmos de aplicação com inclinação positiva e negativa para dose de N mensurando produtividade; 3) obter a relação entre altura de dossel da cultura com, biomassa acumulada e extração de nitrogênio pela planta; 4) explorar a altura de plantas mensurada com um sensor ultrassónico comparando os resultados de predição de biomassa e extração de nitrogênio com aqueles obtidos com sensor de refletância. Os experimentos foram conduzidos em talhões comerciais de cana-de-açúcar e em forma de faixas da cultura, com aplicação em taxa variada de doses de N. Os experimentos foram instalados em solos de textura argilosa e arenosa nas épocas seca e chuvosa do ano sendo todos avaliados com o sensor Yara N-Sensor, modelo ALS (N-Sensor® ALS, Yara International ASA), e em parte comparando com um sistema sensor ultrassónico Polaroid 6500 (Polaroid, Minnetonka, MN, EUA) quando a cultura apresentava altura de colmos entre 0,2 e 0,9 m. Os dados coletados para a calibração do sensor de reflectância se encaixaram exatamente aos dados já publicados mostrando-se o intervalo entre 0.3 e 0.5 m o mais indicado ao uso deste sensor. O algoritmo com inclinação positiva se mostrou superior ao negativo exceto na situação de solo argiloso em estação chuvosa onde a resposta do algoritmo negativo foi maior. A altura de planta de cana-de-açúcar se mostrou altamente correlacionável com biomassa e extração de nitrogênio pela cultura, sendo possível estimar a altura do dossel das plantas de forma indireta pelo uso do sensor ultrassónico. Comparando-se os sistemas sensores, reflectância de dossel se mostrou melhor em estádios iniciais da cultura enquanto altura de dossel se mostrou mais indicada para estimar os parâmetros culturais quando as plantas já recobriam as entrelinhas (+0.6 m colmo), mostrando-se os sistemas sensores complementares quando o período de fertilização for mais amplo na fase inicial da cultura.
Książki na temat "Crop parameter"
Mandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. Radar Remote Sensing for Crop Biophysical Parameter Estimation. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5.
Pełny tekst źródłaBaron, William R. Growing season parameter reconstructions for New England using killing frost records, 1697-1947. Orono, Me: Maine Agricultural and Forest Research Station, 1996.
Znajdź pełny tekst źródłaPal, S. K. Impact of climatic parameters on agricultural production and minimizing crop productivity losses through weather forecast and advisory service in SAARC countries. Dhaka: SAARC Agriculture Centre, 2012.
Znajdź pełny tekst źródłaByrne, Robert James. An evaluation of the effect of nitrogen management programmes on plant nitrogen concentration in milling wheat and subsequent yield and quality parameters. Dublin: University College Dublin, 1998.
Znajdź pełny tekst źródłaWeather and Rice: Proceedings of the International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice 7-10 April, 1986. Agribookstore, 1987.
Znajdź pełny tekst źródłaBusuioc, Aristita, i Alexandru Dumitrescu. Empirical-Statistical Downscaling: Nonlinear Statistical Downscaling. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.770.
Pełny tekst źródłaCzęści książek na temat "Crop parameter"
Akhter, Shamim, Keigo Sakamoto, Yann Chemin i Kento Aida. "Parameter-Less GA Based Crop Parameter Assimilation with Satellite Image". W Computational Science and Its Applications – ICCSA 2009, 118–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02454-2_9.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Radar Vegetation Indices for Crop Growth Monitoring". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 177–228. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_7.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Biophysical Parameter Retrieval Using Compact-Pol SAR Data". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 155–76. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_6.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Introduction". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 1–6. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_1.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Vegetation Models: Empirical and Theoretical Approaches". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 37–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_3.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Evolution of Semi-empirical Approach: Modeling and Inversion". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 73–106. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_4.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Biophysical Parameter Retrieval Using Full- and Dual-Pol SAR Data". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 107–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_5.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Basic Theory of Radar Polarimetry". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 7–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_2.
Pełny tekst źródłaMandal, Dipankar, Avik Bhattacharya i Yalamanchili Subrahmanyeswara Rao. "Summary and Conclusions". W Radar Remote Sensing for Crop Biophysical Parameter Estimation, 229–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4424-5_8.
Pełny tekst źródłaChen, Yuting, Samis Trevezas i Paul-Henry Cournede. "Iterative convolution particle filtering for nonlinear parameter estimation and data assimilation with application to crop yield prediction". W 2013 Proceedings of the Conference on Control and its Applications, 67–74. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973273.10.
Pełny tekst źródłaStreszczenia konferencji na temat "Crop parameter"
Revill, Andrew, Anna Florence, Steve Hoad, Bob Rees, Alasdair MacArthur i Mathew Williams. "UAV-Based Approaches for Crop Parameter Retrievals". W IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518284.
Pełny tekst źródłaShastry, Aditya, Sanjay H A i Madhura Hegde. "A parameter based ANFIS model for crop yield prediction". W 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015. http://dx.doi.org/10.1109/iadcc.2015.7154708.
Pełny tekst źródłaYingying Dong, Jinkai Zhang, Zhijie Wang, Karl Staenz, Craig Coburn, Wei Xu, Xiaodong Yang i Jihua Wang. "Method to speed up LUT-based crop canopy parameter mapping". W IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946874.
Pełny tekst źródłaTian, Xin, Erxue Chen, Zengyuan Li, Z. Bob Su, Feilong Ling, Lina Bai i Fengyu Wang. "Comparison of crop classification capabilities of spaceborne multi-parameter SAR data". W IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5651326.
Pełny tekst źródłaKang, MengZhen, XianWen Wang, Rui Qi i Philippe de Reffye. "GreenScilab-Crop, an open source software for plant simulation and parameter estimation". W 2009 IEEE International Workshop on Open-source Software for Scientific Computation (OSSC). IEEE, 2009. http://dx.doi.org/10.1109/ossc.2009.5416863.
Pełny tekst źródłaSagues, Lluis, Xavier Fabregas i Antoni Broquetas. "Crop height monitoring and surface parameter estimating using polarimetric and interferometric radar techniques". W Europto Remote Sensing, redaktorzy Manfred Owe, Guido D'Urso i Eugenio Zilioli. SPIE, 2001. http://dx.doi.org/10.1117/12.413938.
Pełny tekst źródłaVarella, Hubert, Martine Guerif i Samuel Buis. "Global Sensitivity Analysis (GSA) Measures the Quality of Parameter Estimation. Case of Soil Parameter Estimation with a Crop Model". W IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779531.
Pełny tekst źródłaSchmullius, C., i T. Schrage. "Classification, crop parameter estimation and synergy effects using airborne DLR E-SAR and DAEDALUS images". W IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174). IEEE, 1998. http://dx.doi.org/10.1109/igarss.1998.702810.
Pełny tekst źródłaGuo, Yiqing, Feng Zhao, Yanbo Huang, Matthew A. Lee, Krishna N. Reddy, Reginald S. Fletcher, Steven J. Thomson i Jianxi Huang. "Early detection of crop injury from glyphosate by foliar biochemical parameter inversion through leaf reflectance measurement". W 2013 Second International Conference on Agro-Geoinformatics. IEEE, 2013. http://dx.doi.org/10.1109/argo-geoinformatics.2013.6621891.
Pełny tekst źródłaTurin, E. N., K. G. Zhenchenko, A. A. Gongalo, V. Yu Ivanov, N. V. Karaeva i V. V. Reent. "The results of the study of the direct seeding in the Research Institute of Agriculture of Crimea". W CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-49.
Pełny tekst źródła