Artykuły w czasopismach na temat „Crop improvement”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Crop improvement.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Crop improvement”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Choudhary, Mukesh, Vishal Singh, Vignesh Muthusamy i Shabir Hussain Wani. "Harnessing Crop Wild Relatives for Crop Improvement". LS: International Journal of Life Sciences 6, nr 2 (2017): 73. http://dx.doi.org/10.5958/2319-1198.2017.00009.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Merchán, Kelly. "Crop Improvement ≠ Plant Breeding". CSA News 66, nr 5 (22.04.2021): 28–31. http://dx.doi.org/10.1002/csan.20445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

CLEGG, MICHAEL T. "Genetics of Crop Improvement". American Zoologist 26, nr 3 (sierpień 1986): 821–34. http://dx.doi.org/10.1093/icb/26.3.821.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gosal, Satbir S., Shabir H. Wani i Manjit S. Kang. "Biotechnology and Crop Improvement". Journal of Crop Improvement 24, nr 2 (29.04.2010): 153–217. http://dx.doi.org/10.1080/15427520903584555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Evans, Adrian. "Innovations in crop improvement". Crop Protection 12, nr 3 (maj 1993): 237. http://dx.doi.org/10.1016/0261-2194(93)90116-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Smith, Steven M. "Crop improvement utilizing biotechnology". Agricultural Systems 36, nr 2 (styczeń 1991): 246–47. http://dx.doi.org/10.1016/0308-521x(91)90032-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Praveen Rao, V. "Breeding for Crop Improvement". Current Science 114, nr 02 (25.01.2018): 256. http://dx.doi.org/10.18520/cs/v114/i02/256-257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Springer, Nathan M. "Epigenetics and crop improvement". Trends in Genetics 29, nr 4 (kwiecień 2013): 241–47. http://dx.doi.org/10.1016/j.tig.2012.10.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ramulu, K. S., V. K. Sharma, T. N. Naumova, P. Dijkhuis i M. M. van Lookeren Campagne. "Apomixis for crop improvement". Protoplasma 208, nr 1-4 (marzec 1999): 196–205. http://dx.doi.org/10.1007/bf01279090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sourdille, Pierre, i Pierre Devaux. "Crop Improvement: Now and Beyond". Biology 10, nr 5 (10.05.2021): 421. http://dx.doi.org/10.3390/biology10050421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Singh, Arvinder, i Muskan Bokolia. "CRISPR/Cas for Crop Improvement". Resonance 26, nr 2 (luty 2021): 227–40. http://dx.doi.org/10.1007/s12045-021-1121-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Shigeoka, S. "Transgenic approaches to crop improvement". Japanese journal of crop science 71, Supplement2 (2002): 318–21. http://dx.doi.org/10.1626/jcs.71.supplement2_318.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Lai, Kaitao, Michał T. Lorenc i David Edwards. "Genomic Databases for Crop Improvement". Agronomy 2, nr 1 (20.03.2012): 62–73. http://dx.doi.org/10.3390/agronomy2010062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Cody, Jon, Nathan Swyers, Morgan McCaw, Nathaniel Graham, Changzeng Zhao i James Birchler. "Minichromosomes: Vectors for Crop Improvement". Agronomy 5, nr 3 (6.07.2015): 309–21. http://dx.doi.org/10.3390/agronomy5030309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Shen, Lisha, i Hao Yu. "Epitranscriptome engineering in crop improvement". Molecular Plant 14, nr 9 (wrzesień 2021): 1418–20. http://dx.doi.org/10.1016/j.molp.2021.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kumari, Rima. "Allele Mining for Crop Improvement". International Journal of Pure & Applied Bioscience 6, nr 1 (28.02.2018): 1456–65. http://dx.doi.org/10.18782/2320-7051.6073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bevan, Michael W., Cristobal Uauy, Brande B. H. Wulff, Ji Zhou, Ksenia Krasileva i Matthew D. Clark. "Genomic innovation for crop improvement". Nature 543, nr 7645 (marzec 2017): 346–54. http://dx.doi.org/10.1038/nature22011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Evans, L. T. "Is Crop Improvement Still Needed?" Journal of Crop Improvement 14, nr 1-2 (13.09.2005): 1–7. http://dx.doi.org/10.1300/j411v14n01_01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Sneller, Clay H., Randall L. Nelson, T. E. Carter i Zhanglin Cui. "Genetic Diversity in Crop Improvement". Journal of Crop Improvement 14, nr 1-2 (13.09.2005): 103–44. http://dx.doi.org/10.1300/j411v14n01_06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Zhang, Jingyu, Xin-Min Li, Hong-Xuan Lin i Kang Chong. "Crop Improvement Through Temperature Resilience". Annual Review of Plant Biology 70, nr 1 (29.04.2019): 753–80. http://dx.doi.org/10.1146/annurev-arplant-050718-100016.

Pełny tekst źródła
Streszczenie:
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.
Style APA, Harvard, Vancouver, ISO itp.
21

Brennan, Charles. "Concise Encyclopaedia of Crop Improvement". International Journal of Food Science & Technology 44, nr 10 (październik 2009): 2085. http://dx.doi.org/10.1111/j.1365-2621.2008.01771.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Parry, M. A. J., P. J. Madgwick, C. Bayon, K. Tearall, A. Hernandez-Lopez, M. Baudo, M. Rakszegi i in. "Mutation discovery for crop improvement". Journal of Experimental Botany 60, nr 10 (10.06.2009): 2817–25. http://dx.doi.org/10.1093/jxb/erp189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Burgess, Darren J. "Branching out for crop improvement". Nature Reviews Genetics 18, nr 7 (5.06.2017): 393. http://dx.doi.org/10.1038/nrg.2017.48.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Martin, Gregory B. "Gene discovery for crop improvement". Current Opinion in Biotechnology 9, nr 2 (kwiecień 1998): 220–26. http://dx.doi.org/10.1016/s0958-1669(98)80119-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Dunwell, Jim M. "Transgenic approaches to crop improvement". Journal of Experimental Botany 51, suppl_1 (luty 2000): 487–96. http://dx.doi.org/10.1093/jexbot/51.suppl_1.487.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Verhage, Leonie. "The colour of crop improvement". Plant Journal 103, nr 6 (wrzesień 2020): 1965–66. http://dx.doi.org/10.1111/tpj.14971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rafalski, Antoni. "Molecular techniques in crop improvement". Plant Science 163, nr 6 (grudzień 2002): 1177. http://dx.doi.org/10.1016/s0168-9452(02)00330-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Brown, D. C. W., i T. A. Thorpe. "Crop improvement through tissue culture". World Journal of Microbiology & Biotechnology 11, nr 4 (lipiec 1995): 409–15. http://dx.doi.org/10.1007/bf00364616.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rafalski, J. Antoni. "Association genetics in crop improvement". Current Opinion in Plant Biology 13, nr 2 (kwiecień 2010): 174–80. http://dx.doi.org/10.1016/j.pbi.2009.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Varshney, Rajeev K., Pallavi Sinha, Vikas K. Singh, Arvind Kumar, Qifa Zhang i Jeffrey L. Bennetzen. "5Gs for crop genetic improvement". Current Opinion in Plant Biology 56 (sierpień 2020): 190–96. http://dx.doi.org/10.1016/j.pbi.2019.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kerchev, Pavel, Barbara De Smet, Cezary Waszczak, Joris Messens i Frank Van Breusegem. "Redox Strategies for Crop Improvement". Antioxidants & Redox Signaling 23, nr 14 (10.11.2015): 1186–205. http://dx.doi.org/10.1089/ars.2014.6033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

St. Martin, S. K. "Plant Adaption and Crop Improvement". Crop Science 38, nr 1 (styczeń 1998): 274–75. http://dx.doi.org/10.2135/cropsci1998.0011183x003800010047x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lin, Rongshuang. "Concise Encyclopedia of Crop Improvement". Journal of Environmental Quality 38, nr 3 (maj 2009): 1329. http://dx.doi.org/10.2134/jeq2008.0023br.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Hussain,, G., M. S. Wani,, M. A. Mir,, Z. A. Rather i K. M. Bhat,. "Micrografting for fruit crop improvement". African Journal of Biotechnology 13, nr 25 (18.06.2014): 2474–83. http://dx.doi.org/10.5897/ajb2013.13602.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Heffner, Elliot L., Mark E. Sorrells i Jean-Luc Jannink. "Genomic Selection for Crop Improvement". Crop Science 49, nr 1 (styczeń 2009): 1–12. http://dx.doi.org/10.2135/cropsci2008.08.0512.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

GOODMAN, R. M., H. HAUPTLI, A. CROSSWAY i V. C. KNAUF. "Gene Transfer in Crop Improvement". Science 236, nr 4797 (3.04.1987): 48–54. http://dx.doi.org/10.1126/science.236.4797.48.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sane, P. V., i U. C. Lavania. "Innovative Approaches to Crop Improvement". Proceedings of the Indian National Science Academy 80, nr 1 (18.03.2014): 17. http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

McCouch, Susan. "Wild Alleles for Crop Improvement". Nature Biotechnology 17, S5 (grudzień 1999): 32. http://dx.doi.org/10.1038/70392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Pauls, K. P. "Plant biotechnology for crop improvement". Biotechnology Advances 13, nr 4 (styczeń 1995): 673–93. http://dx.doi.org/10.1016/0734-9750(95)02010-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cramer, Rainer, Laurence Bindschedler i Ganesh Agrawal. "Plant Proteomics in Crop Improvement". PROTEOMICS 13, nr 12-13 (czerwiec 2013): 1771. http://dx.doi.org/10.1002/pmic.201370104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Cortés, Andrés J., María Ángeles Castillejo i Roxana Yockteng. "‘Omics’ Approaches for Crop Improvement". Agronomy 13, nr 5 (19.05.2023): 1401. http://dx.doi.org/10.3390/agronomy13051401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Murín, Gustáv, i Karol Mičieta. "Improvement of Crop Production by Means of a Storage Effect". International Journal of Environmental and Agriculture Research 3, nr 5 (31.05.2017): 12–25. http://dx.doi.org/10.25125/agriculture-journal-ijoear-apr-2017-26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Goldman, I. L. "Principles of Crop Improvement. 2nd ed." HortTechnology 10, nr 3 (styczeń 2000): 638b—640. http://dx.doi.org/10.21273/horttech.10.3.638b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ward, Richard W. "Principles of Crop Improvement, 2nd Edition". Crop Science 40, nr 2 (marzec 2000): 562–63. http://dx.doi.org/10.2135/cropsci2000.0006br.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kim, Hyeran, Sang-Tae Kim, Sang-Gyu Kim i Jin-Soo Kim. "Targeted Genome Editing for Crop Improvement". Plant Breeding and Biotechnology 3, nr 4 (30.11.2015): 283–90. http://dx.doi.org/10.9787/pbb.2015.3.4.283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, Sandra K. Truong, Ryan F. McCormick, Frank Technow, Owen Powell i in. "Crop Improvement for Circular Bioeconomy Systems". Journal of the ASABE 65, nr 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Pełny tekst źródła
Streszczenie:
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to consider the entire system, and thus provide solutions to improve complex systems for higher productivity, resource use efficiency, and environmental quality. The methods and approaches that underpinned the doubling of yields during the last century may no longer be fully adequate to target crop improvement for circular agricultural systems. Here we propose a multidimensional framework for prediction with outcomes useful to assess both crop performance traits and environmental sustainability of the designed agricultural systems. The study focuses on maize harvestable grain yield and total carbon production, water use, and use efficiency for yield and carbon. The framework builds on the crop growth model whole genome prediction system, which is enabled by advanced phenomics and the integration of symbolic and sub-symbolic artificial intelligence. We demonstrate the approach and prediction accuracy advantages over a standard statistical genomic prediction approach used to breed maize hybrids for yield, flowering time, and kernel set using a dataset comprised of 7004 hybrids, 103 breeding populations, and 62 environments resulting from six years of experimentation in maize drought breeding in the U.S. We propose this framework to motivate a dialogue for how to enable circularity in agriculture through prediction-based systems design. Keywords: Circular bioeconomy, Circular economy, Crop improvement, Crop models, Drought, Gene editing, Genomic prediction, Maize, Plant breeding.
Style APA, Harvard, Vancouver, ISO itp.
47

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, Sandra K. Truong, Ryan F. McCormick, Frank Technow, Owen Powell i in. "Crop Improvement for Circular Bioeconomy Systems". Journal of the ASABE 65, nr 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Pełny tekst źródła
Streszczenie:
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to consider the entire system, and thus provide solutions to improve complex systems for higher productivity, resource use efficiency, and environmental quality. The methods and approaches that underpinned the doubling of yields during the last century may no longer be fully adequate to target crop improvement for circular agricultural systems. Here we propose a multidimensional framework for prediction with outcomes useful to assess both crop performance traits and environmental sustainability of the designed agricultural systems. The study focuses on maize harvestable grain yield and total carbon production, water use, and use efficiency for yield and carbon. The framework builds on the crop growth model whole genome prediction system, which is enabled by advanced phenomics and the integration of symbolic and sub-symbolic artificial intelligence. We demonstrate the approach and prediction accuracy advantages over a standard statistical genomic prediction approach used to breed maize hybrids for yield, flowering time, and kernel set using a dataset comprised of 7004 hybrids, 103 breeding populations, and 62 environments resulting from six years of experimentation in maize drought breeding in the U.S. We propose this framework to motivate a dialogue for how to enable circularity in agriculture through prediction-based systems design. Keywords: Circular bioeconomy, Circular economy, Crop improvement, Crop models, Drought, Gene editing, Genomic prediction, Maize, Plant breeding.
Style APA, Harvard, Vancouver, ISO itp.
48

Temesgen, Begna. "Speed breeding to accelerate crop improvement". International Journal of Agricultural Science and Food Technology 8, nr 2 (2.06.2022): 178–86. http://dx.doi.org/10.17352/2455-815x.000161.

Pełny tekst źródła
Streszczenie:
Global food security has become a major issue as the human population grows and the environment changes, with the current rate of improvement of several important crops inadequate to meet future demand. Crop plants have extended generation times, which contributes to the slow rate of progress. However, speed breeding has revolutionized the entire world by reducing generation time and speeding up breeding and research programs to improve crop varieties. In the absence of an integrated pre-breeding program, breeding new and high-performing cultivars with market-preferred traits can take more than ten years. After the first cross with parental genotypes, a large amount of time, space, and resources are committed to the selection and genetic advancement stages during the early stages of breeding. Speed breeding has the ability to shorten the time it takes to develop, market, and commercialize cultivars. Crop improvement in the face of a fast-changing environment and an ever-increasing human population is a major concern for scientists around the world. Current crop enhancement projects are progressing at a rate that is insufficient to meet food demand. Crop redesign is urgently needed for climate resilience, as well as long-term yield and nutrition. Crop progress is slowed significantly by the long generation time required by crop plants during the breeding process. Speed breeding is now being used on a large scale to shorten generation time and support multiple crop generations per year as a solution in this approach. Researchers are now using an integrated approach to improve breeding efficiency, combining speed breeding with current plant breeding and genetic engineering methods. Speed breeding is a promising approach for achieving nutritional security and sustainable agriculture by shortening breeding cycles for food and industrial crop enhancement. Speed breeding is a methodology that allows plant breeders to improve crop production by adjusting temperature, light duration, and intensity to boost plant development. It uses an artificial source of light, which is kept on continuously, to activate the photosynthetic process, which leads to growth and reproduction much earlier than normal. This will assist in meeting the demands of the future’s rising population. This can be accomplished using a variety of technologies, including genotyping, marker-assisted selection, high throughput phenotyping; gene editing, genomic selection, and re-domestication, all of which can be combined with speed breeding to allow plant breeders to keep up with a changing climate and growing human population.
Style APA, Harvard, Vancouver, ISO itp.
49

Soriano, Jose Miguel. "Molecular Marker Technology for Crop Improvement". Agronomy 10, nr 10 (24.09.2020): 1462. http://dx.doi.org/10.3390/agronomy10101462.

Pełny tekst źródła
Streszczenie:
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming, due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants open new possibilities for advancing crop improvement. This Special Issue collects sixteen research studies, including the application of molecular markers in eleven crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.
Style APA, Harvard, Vancouver, ISO itp.
50

Rajagopal, Velamoor, Ramaswamy Manimekalai, Krishnamurthy Devakumar, Rajesh, Anitha Karun, Vittal Niral, Murali Gopal i in. "A database for coconut crop improvement". Bioinformation 1, nr 2 (11.08.2005): 75–77. http://dx.doi.org/10.6026/97320630001075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii