Gotowa bibliografia na temat „Critical stress intensity factor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Critical stress intensity factor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Critical stress intensity factor"
Dharmarajan, N., i C. Vipulanandan. "Critical stress intensity factor of epoxy mortar". Polymer Engineering and Science 28, nr 18 (wrzesień 1988): 1182–91. http://dx.doi.org/10.1002/pen.760281808.
Pełny tekst źródłaDaud, M. A. M., Zainuddin Sajuri, Mohd Zaidi Omar i Junaidi Syarif. "Critical Stress Intensity Factor Determination for AZ61 Magnesium Alloy". Key Engineering Materials 462-463 (styczeń 2011): 1121–26. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1121.
Pełny tekst źródłaZarzycki, J. "Critical stress intensity factors of wet gels". Journal of Non-Crystalline Solids 100, nr 1-3 (marzec 1988): 359–63. http://dx.doi.org/10.1016/0022-3093(88)90046-4.
Pełny tekst źródłaZheng, Heng Xiang, i Cai Ying Chen. "Research on Interface Critical Fracture of Different Materials Based on Critical Fracture Curve". Applied Mechanics and Materials 204-208 (październik 2012): 3090–93. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.3090.
Pełny tekst źródłaSATO, Kiyoshi, Hisato YAMAMOTO, Atsushi TAYA i Hiroyuki OKUYAMA. "Influence of Moisture Content on Critical Stress Intensity Factor of Wood." Journal of the Society of Materials Science, Japan 49, nr 4 (2000): 365–67. http://dx.doi.org/10.2472/jsms.49.365.
Pełny tekst źródłaMeriem-Benziane, Madjid, Gadi Ibrahim, Zahloul Hamou i BelAbbes Bachir-Bouiadjra. "Stress intensity factor investigation of critical surface crack in a cylinder". Advances in Materials and Processing Technologies 1, nr 1-2 (3.04.2015): 36–42. http://dx.doi.org/10.1080/2374068x.2015.1111702.
Pełny tekst źródłaYoshihara, Hiroshi. "Simple estimation of critical stress intensity factors of wood by tests with double cantilever beam and three-point end-notched flexure". Holzforschung 61, nr 2 (1.03.2007): 182–89. http://dx.doi.org/10.1515/hf.2007.032.
Pełny tekst źródłaAnam, Khairul, i Chih Kuang Lin. "Thermal Stress Intensity Factors of Crack in Solid Oxide Fuel Cells". Applied Mechanics and Materials 493 (styczeń 2014): 331–36. http://dx.doi.org/10.4028/www.scientific.net/amm.493.331.
Pełny tekst źródłaAbuzaid, Ahmed, Meftah Hrairi i Mohd Sultan Dawood. "Mode I Stress Intensity Factor for a Cracked Plate with an Integrated Piezoelectric Actuator". Advanced Materials Research 1115 (lipiec 2015): 517–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.517.
Pełny tekst źródłaToribio, J., F. J. Ayaso, B. González, J. C. Matos, D. Vergara i M. Lorenzo. "Critical stress intensity factors in steel cracked wires". Materials & Design 32, nr 8-9 (wrzesień 2011): 4424–29. http://dx.doi.org/10.1016/j.matdes.2011.03.064.
Pełny tekst źródłaRozprawy doktorskie na temat "Critical stress intensity factor"
Alkoles, Omar M. S. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn. Experimental investigation the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene". Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.
Pełny tekst źródłaAlkoles, Omar M. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn : experimental investigation of the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene". Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.
Pełny tekst źródłaLammens, Bastien. "Caractérisation de la décohésion dynamique des matériaux composites à matrice organique (CMO)". Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0007.
Pełny tekst źródłaOrganic matrix laminated composites are increasingly used in the aeronautical field to reduce the weight of structures. However, during an impact on this type of material, various damage mechanism can occur, such as delamination. This is a process of macroscopic decohesion of the interlaminar environment, which can be characterised by GIC (or KIC ). The literature shows a wide disparity in measurements due to incomplete decoupling of the effects of resin confinement by fibers, nonlinearitiesbehaviour and/or velocity effects. This work proposes to develop an experimental protocol to characterise pure resin usingfullfields measurements to methodically study these couplings. The goal is to evaluate the impact of the crack propagation speed and the structural effects on the fracture behaviour and in particular to extend Griffith's theory to laminated composites. Different specimen geometries are used to reproduce structural effects. Crack propagation speeds ranging from quasi-static to dynamic are studied and all the tests are analysed using linear elastic fracture mechanics and the fracture surfaces. Finally, this work proposes a model to describe the evolution of KIC for the resin HexplyM21 used in aeronautics field, from the non-singularterms of the stress field T-stress, B-stress and also the speed ȧ in the ranges [0 - 15] MPa, [- 200 - 10] MPa.m-0.5 et [10-6, 600] m.s-1 respectively
Keller, Scott. "Stress Intensity Factor Dependence of HG-AL Liquid Metal Embrittlement". Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2220.
Pełny tekst źródłaM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering MSME
Teh, Lay Seong. "Library of geometric influences for stress intensity factor weight functions". Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566060.
Pełny tekst źródłaArli, Sirisha Divya. "An Investigation on the Stress Intensity Factor of Surface Micro-cracks". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495620917553525.
Pełny tekst źródłaFinlayson, Eric F. "Stress Intensity Factor Distributions in Bimaterial Systems - A Three Dimensional Photoelastic Investigation". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36504.
Pełny tekst źródłaMaster of Science
Ventura, Antunes Fernando Jorge. "Influence of frequency, stress ratio and stress state on fatigue crack growth in nickel base superalloys at elevated temperature". Thesis, University of Portsmouth, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285929.
Pełny tekst źródłaGarrido, F. A. DiÌaz. "Development of a methodology for thermoelastic investigation of the effective stress intensity factor". Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412241.
Pełny tekst źródłaAzeez, Ahmed. "Effect of dwell time on stress intensity factor of ferritic steel for steam turbine applications". Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148283.
Pełny tekst źródłaKsiążki na temat "Critical stress intensity factor"
United States. National Aeronautics and Space Administration., red. Determination of stress intensity factor distributions for "interface" cracks in incompressible, dissimilar materials: Summary report : reporting period - 8/15/94 - 12/31/97 : grant no. NAG-1-1622-Supl. 1-5*. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródła1932-, Carlsson Janne, red. Weight functions and stress intensity factor solutions. Oxford: Pergamon Press, 1991.
Znajdź pełny tekst źródłaS, Raju I., Newman J. C i Langley Research Center, red. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Znajdź pełny tekst źródłaS, Raju I., Newman J. C i Langley Research Center, red. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Znajdź pełny tekst źródłaS, Raju I., Newman J. C i Langley Research Center, red. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Znajdź pełny tekst źródłaHeppler, G. R. Stress intensity factor calculation for designing with fiber-reinforced composite materials. [S.l.]: [s.n.], 1985.
Znajdź pełny tekst źródłaPook, L. P. Keyword scheme for a proposed computer-based bibliography of stress intensity factor solutions. Glasgow: National Engineering Laboratory, 1986.
Znajdź pełny tekst źródłaNoblett, J. E. A stress intensity factor solution for root defects in fillet and partial penetration welds. Cambridge: TWI, 1996.
Znajdź pełny tekst źródłaPang, H. L. J. A literature review of stress intensity factor solutions fora weld toe crack in a fillet welded joint. East Kilbride: National Engineering Laboratory, 1991.
Znajdź pełny tekst źródłak, Kokula Krishna Hari, red. FEA Analysis for Investigation of Stress Intensity Factor (SIF) for a Plate with Hole and Patches: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Critical stress intensity factor"
Gdoutos, Emmanuel E. "Critical Stress Intensity Factor Fracture Criterion". W Fracture Mechanics, 131–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_5.
Pełny tekst źródłaGdoutos, Emmanuel E. "Critical Stress Intensity Factor Fracture Criterion". W Fracture Mechanics, 117–51. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8158-5_5.
Pełny tekst źródłaGdoutos, E. E. "Experimental Determination of Critical Stress Intensity Factor KI". W Problems of Fracture Mechanics and Fatigue, 155–60. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_34.
Pełny tekst źródłaSglavo, Vincenzo M., David J. Green, Steven W. Martz i Richard E. Tressler. "Determination of Threshold Stress Intensity Factor for Sub-Critical Crack Growth in Ceramic Materials by Interrupted Static Fatigue Test". W Fracture Mechanics of Ceramics, 167–77. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5853-8_13.
Pełny tekst źródłaGooch, Jan W. "Stress-Intensity Factor". W Encyclopedic Dictionary of Polymers, 705. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11281.
Pełny tekst źródłaGdoutos, E. E. "Dynamic Stress Intensity Factor". W Problems of Fracture Mechanics and Fatigue, 359–63. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_78.
Pełny tekst źródłaRadaj, Dieter. "Extended Stress Intensity Factor Concepts". W Advanced Methods of Fatigue Assessment, 101–265. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30740-9_2.
Pełny tekst źródłaGdoutos, E. E. "Photoelastic Determination of Stress Intensity Factor KI". W Problems of Fracture Mechanics and Fatigue, 63–64. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_14.
Pełny tekst źródłaKobayashi, A. S., i K. H. Yang. "Dynamic Stress Intensity Factor versus Crack Velocity Relation". W Advanced Materials for Severe Service Applications, 51–60. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3445-0_4.
Pełny tekst źródłaLu, Xi. "Stochastic Boundary Element Analysis of Stress Intensity Factor". W Computational Mechanics ’88, 1401–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_370.
Pełny tekst źródłaStreszczenia konferencji na temat "Critical stress intensity factor"
JUN, HYUNKYU. "STRESS INTENSITY FACTOR CALCULATION ON CRITICAL POINTS OF RAILWAY BOGIE FRAME". W Proceedings of the International Conference on ANDE 2007. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812793034_0089.
Pełny tekst źródłaLal, Achchhe, i Rakesh K. Kapania. "Stochastic Critical Stress Intensity Factor Response of Single Edge Notched Laminated Composite Plate". W 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1615.
Pełny tekst źródłaSun, Rui, Zongwen An, Hong-Zhong Huang i Qiming Ma. "Stress Intensity Factor Calculation Using a Weight Function Method". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34736.
Pełny tekst źródłaVaziri, A., i H. Nayeb-Hashemi. "Effective Stress Intensity Factor in Mode III Crack Growth in Round Shafts". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43478.
Pełny tekst źródłaFaidy, Claude. "Stress Intensity Factor Handbook: Comparison of RSEM and ASME XI Codes". W ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45199.
Pełny tekst źródłaKlingbeil, Nathan W., i Jack L. Beuth. "Free-Edge Stress Intensity Factors for Edge-Loaded Bimaterial Layers". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0511.
Pełny tekst źródłaJohnston, Carol, i Tyler London. "Development of a Stress Intensity Factor Solution for Mechanically Lined Pipe". W ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-78559.
Pełny tekst źródłaBrückner-Foit, A., P. Hülsmeier, M. Sckuhr i H. Riesch-Oppermann. "Limitations of the Weibull Theory in Stress Fields With Pronounced Stress Gradients". W ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0663.
Pełny tekst źródłaKeller, Scott G., i Ali P. Gordon. "Stress Intensity Incubation Periods for the Al-Hg Coupled Subjected to LME". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38921.
Pełny tekst źródłaCheng, Wing, i Shigeru Itoh. "Stress Intensity Factors for Defects in Two Common Weld Joints". W ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93348.
Pełny tekst źródłaRaporty organizacyjne na temat "Critical stress intensity factor"
Semiga, Vlad. PR-214-174517-WEB Sleeve End Fillet Weld Stress Intensity Factor Solutions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2019. http://dx.doi.org/10.55274/r0011612.
Pełny tekst źródłaDinovitzer, Aaron. PR-214-114504-R01 Development of Sleeve End Fillet Weld Fitness for Service Assessment. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2020. http://dx.doi.org/10.55274/r0010989.
Pełny tekst źródłaTurnbull, A., i L. Crocker. Finite element calculation of stress intensity factor for cracks developing from corrosion pit. National Physical Laboratory, styczeń 2021. http://dx.doi.org/10.47120/npl.mat95.
Pełny tekst źródłaUnderwood, John H. Stress Intensity Factor and Load-Line Displacement Expressions for the Round Bar Bend Specimen. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1994. http://dx.doi.org/10.21236/ada285669.
Pełny tekst źródłaDinovitzer, Aaron. PR-214-174517-Z01 Development of Sleeve End Fillet Weld Stress Intensity Factor Calculator. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2019. http://dx.doi.org/10.55274/r0011588.
Pełny tekst źródłaKapp, J. A. Wide Range Stress Intensity Factor and Crack-Mouth-Opening Displacement Expressions Suitable for Short Crack Fracture Testing with Arc Bend-Chord Suppport Samples. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1990. http://dx.doi.org/10.21236/ada218395.
Pełny tekst źródłaDinovitzer, Aaron. PR-214-114504-R02 Development of Sleeve End Fillet Weld Fitness for Service Assessment Tools. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2016. http://dx.doi.org/10.55274/r0010890.
Pełny tekst źródłaGould, Melissa, Bill Bruce i Vince Arnett. PR-186-113600-R01 Grinding Limits for Repair of SCC on Operating Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2018. http://dx.doi.org/10.55274/r0011473.
Pełny tekst źródłaCialone, H., D. N. Williams i T. P. Groeneveld. L51621 Hydrogen-Related Failures at Mechanically Damaged Regions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 1991. http://dx.doi.org/10.55274/r0010313.
Pełny tekst źródłaHorwitz, Benjamin A., i Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, marzec 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Pełny tekst źródła