Gotowa bibliografia na temat „Covalent Interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Covalent Interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Covalent Interactions"
Alkorta, Ibon, i Sławomir J. Grabowski. "Non-covalent interactions". Computational and Theoretical Chemistry 998 (październik 2012): 1. http://dx.doi.org/10.1016/j.comptc.2012.07.025.
Pełny tekst źródłaFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO i NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS". Journal of Bioinformatics and Computational Biology 06, nr 04 (sierpień 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Pełny tekst źródłaBagus, Paul S., i Connie J. Nelin. "Covalent interactions in oxides". Journal of Electron Spectroscopy and Related Phenomena 194 (czerwiec 2014): 37–44. http://dx.doi.org/10.1016/j.elspec.2013.11.004.
Pełny tekst źródłaSchneider, Hans-J�rg. "EDITORIAL: NON-COVALENT INTERACTIONS". Journal of Physical Organic Chemistry 10, nr 5 (maj 1997): 253. http://dx.doi.org/10.1002/(sici)1099-1395(199705)10:5<253::aid-poc1875>3.0.co;2-r.
Pełny tekst źródłaOlson, R. E. "Ionic-covalent collision interactions". International Journal of Quantum Chemistry 24, S17 (9.07.2009): 49–64. http://dx.doi.org/10.1002/qua.560240807.
Pełny tekst źródłaMajumdar, Dhrubajyoti, A. Frontera, Rosa M. Gomila, Sourav Das i Kalipada Bankura. "Synthesis, spectroscopic findings and crystal engineering of Pb(ii)–Salen coordination polymers, and supramolecular architectures engineered by σ-hole/spodium/tetrel bonds: a combined experimental and theoretical investigation". RSC Advances 12, nr 10 (2022): 6352–63. http://dx.doi.org/10.1039/d1ra09346k.
Pełny tekst źródłaBjij, Imane, Pritika Ramharack, Shama Khan, Driss Cherqaoui i Mahmoud E. S. Soliman. "Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling". Molecules 24, nr 17 (28.08.2019): 3125. http://dx.doi.org/10.3390/molecules24173125.
Pełny tekst źródłaNovikov, Alexander S. "Non-Covalent Interactions in Polymers". Polymers 15, nr 5 (24.02.2023): 1139. http://dx.doi.org/10.3390/polym15051139.
Pełny tekst źródłaWang, Zhifang, Geng An, Ye Zhu, Xuemin Liu, Yunhua Chen, Hongkai Wu, Yingjun Wang, Xuetao Shi i Chuanbin Mao. "3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks". Materials Horizons 6, nr 4 (2019): 733–42. http://dx.doi.org/10.1039/c8mh01208c.
Pełny tekst źródłaČerný, Jiří, i Pavel Hobza. "Non-covalent interactions in biomacromolecules". Physical Chemistry Chemical Physics 9, nr 39 (2007): 5291. http://dx.doi.org/10.1039/b704781a.
Pełny tekst źródłaRozprawy doktorskie na temat "Covalent Interactions"
Yang, Lixu. "Non-covalent interactions in solution". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8097.
Pełny tekst źródłaCockroft, Scott L. "Understanding non-covalent interactions". Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434497.
Pełny tekst źródłaBayach, Imene. "Non-covalent interactions in natural products". Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0050/document.
Pełny tekst źródłaNatural polyphenols form non-covalent complexes in which π-stacking and H-bonding play a key stabilizing role. The dispersion-corrected DFT calculations have paved the way towards reliable description of aggregation processes of natural products. In this work, these methods are applied at i) understanding of stereo- and regio-selective oligostilbenoids biosynthesis; ii) predicting natural antioxidant aggregation within lipid bilayer membrane, which may allow rationalizing the synergism of vitamin E, vitamin C and polyphenols in their antioxidant action; and iii) modulating optical properties of chalcone derivatives
Hubbard, Thomas A. "Non-covalent interactions in lubricant chemistry". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15935.
Pełny tekst źródłaSIRTORI, F. RICCARDI. "STUDY OF COVALENT AND NON COVALENT INTERACTIONS OF BIOPOLYMER BY MASS SPECTROMETRY". Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150205.
Pełny tekst źródłaComí, Bonachí Marc. "Biobased polyurethanes with tunable properties through covalent and non-covalent approaches". Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/454764.
Pełny tekst źródłaEsta tesis está dirigida específicamente al desarrollo de poliuretanos (PU)s funcionalizados en la cadena lateral (FPU)s, sintetizados a partir de dioles funcionales que provienen de ácidos grasos y dos diisocianats diferentes; el diisocianato de isoforona (IPDI) y el diisocianato de hexametileno (HDI). Estos nuevos FPUs presentan una amina terciaria y grupos alquilo, alilo, propargilo o la combinación de éstos en posiciones de cadena lateral. Posteriormente los FPUs se modifican mediante dos mecanismos de post-polimerización basados en enlaces covalentes o en enlaces no covalentes.En el primer caso, se llevan a cabo una serie de reacciones fotoiniciadas de acoplamiento tiol-eno/ino entre el grupo alilo y propargilo que presentan los FPUs (formados a partir de IPDI), y tioglicerol. Los hidroxi-PUs obtenidos, exhiben una mejora de su carácter hidrófilo. Alternativamente, los FPUs que contienen sólo una amina terciaria como grupo funcional situado en la cadena lateral del PU, se mezclan con diferentes ácidos carboxílicos mediante una reacción de ácido base. Los PUs supramoleculares resultantes (SPU)s se caracterizan por espectroscopia para verificar la presencia de enlaces iónicos de hidrógeno que unen las cadenas de PU formando interacciones físicas. Además, se demuestra la correlación existente entre la estructura química y las propiedades térmicas y mecánicas de los materiales sintetizados. Estos materiales presentan prometedoras propiedades adaptativas. Por ejemplo, resaltan las buenas propiedades de regeneración y reciclaje/remodelación, debidas al carácter reversible de las interacciones físicas. Adicionalmente, estos elastómeros poseen una inherente capacidad de autorautorreparación, que en términos prácticos se podría ver como una mejora de su sostenibilidad. Finalmente, se sintetizan redes de PU que tienen un doble carácter estructural mediante enlaces iónicos de hidrógeno dinámicos y entrecruzamientos covalentes. La variación de la densidad de entrecruzamiento covalente introducido para cada una de estas redes produce un ajuste sistemático de las propiedades mecánicas y la sensibilidad del material al calor. Esta preparación demuestra una vía simple y eficaz para la fabricación de poliuretanos multifuncionales.
This Thesis is addressed to the development of side-chain functionalized polyurethanes (FPU)s, with enhanced properties, made from fatty acid-based functional diols and two different diisocyanates; isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). The novel FPUs present tertiary amine and alkyl, allyl, propargyl moieties or the combination of these, as side-chain positions groups. The FPUs were further modified via two post-polymerization mechanisms based on covalent or non-covalent bonds. In the first case, photoinitiated thiol-ene/yne coupling reaction between allyl, propargyl-functionalized PUs (based on IPDI) and thioglycerol was carried out. Obtained hydroxyl-PUs exhibit different thermal and mechanical properties in comparison with precursor PUs. Moreover, the incorporation of hydroxyl groups leads to PUs with enhanced hydrophilicity. Alternatively, the FPU (based on IPDI) containing only tertiary amine pendant group was mixed with different carboxylic acids in an acid-base reaction. Supramolecular ionic PUs were characterized by spectroscopic tools to verify the presence of ionic hydrogen bond as ionic interaction. Correlation between structure and thermal and mechanical properties was demonstrated. Samples show rapid thermal reversibility and recyclability thanks to the reversible bonds. In addition, elastomeric supramolecular PUs networks were prepared from HDI and aminodiol. The resulting materials exhibit some promising adaptive material properties such as effective energy dissipation upon deformation through unzipping the ionic hydrogen bonding network, combined with good shape-regeneration property and recycling/reshaping capability arising from their recoverable nature. More importantly, the resulting biobased elastomers possess the inherent self-healing ability, which can be seen as an upgrade of their sustainability.A novel thermo-reversible network is constructed by the thiol-ene functionalized polyurethane via dynamic ionic hydrogen bonds and covalent cross-links. By varying the covalent cross-linking density, the mechanical properties and the stimuli-responsive behaviour can be systematically tuned. This synthesis demonstrates a simple and effective pathway to fabricate multifunctional polyurethanes with desired functions.
Mati, Ioulia. "Molecular torsion balances for quantifying non-covalent interactions". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7610.
Pełny tekst źródłaBenevelli, Francesca. "Solid-state NMR characterisation of non-covalent interactions". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620286.
Pełny tekst źródłaAbuajwa, Wissam. "Non-covalent interactions of C60 fullerene and its derivatives". Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.588068.
Pełny tekst źródłaAdam, Catherine. "Molecular balances for measuring non-covalent interactions in solution". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16466.
Pełny tekst źródłaKsiążki na temat "Covalent Interactions"
Hobza, Pavel. Non-covalent interactions. Cambridge: Royal Society of Chemistry, 2009.
Znajdź pełny tekst źródłaMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich i Armando J. L. Pombeiro, red. Non-covalent Interactions in the Synthesis and Design of New Compounds. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.
Pełny tekst źródłaSinclair, Andrew Jamieson. Using non-covalent interaction to accelerate a [three plus two] dipolar cycloaddition reaction. Birmingham: University of Birmingham, 2000.
Znajdź pełny tekst źródłaNon-Covalent Interactions. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559906.
Pełny tekst źródłaNon-Covalent Interactions in Proteins. World Scientific Publishing Co Pte Ltd, 2021.
Znajdź pełny tekst źródłaKarshikoff, Andrey. Non-Covalent Interactions in Proteins. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/12035.
Pełny tekst źródłaKarshikoff, Andrey. Non-Covalent Interactions in Proteins. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/p477.
Pełny tekst źródłaBarbier, Vincent, i Olivier R. P. David. Non-Covalent Interactions in Organocatalysis. Elsevier, 2018.
Znajdź pełny tekst źródłaNon-covalent Interactions in Proteins. Imperial College Press, 2006.
Znajdź pełny tekst źródłaHobza, Pavel, Jonathan Hirst, Kenneth D. Jordan, Carmay Lim i Klaus Muller-Dethlefs. Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry, The, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "Covalent Interactions"
Oscarsson, S., i J. Porath. "Covalent Chromatography". W Molecular Interactions in Bioseparations, 403–13. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1872-7_26.
Pełny tekst źródłaMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich, M. Fátima C. Guedes da Silva i Armando J. L. Pombeiro. "Activation of Covalent Bonds Through Non-covalent Interactions". W Non-covalent Interactions in the Synthesis and Design of New Compounds, 1–21. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch1.
Pełny tekst źródłaYon-Kahn, Jeannine, i Guy Hervé. "Regulation by Non-Covalent Interactions". W Molecular and Cellular Enzymology, 547–629. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01228-0_14.
Pełny tekst źródłaCheng, Yunfeng, Xiaochuan Yang i Binghe Wang. "Covalent Interactions in Chemosensor Design". W Chemosensors, 25–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118019580.ch3.
Pełny tekst źródłaHunter, Christopher. "Non-Covalent Interactions Between Aromatic Molecules". W From Simplicity to Complexity in Chemistry — and Beyond, 113–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-49368-3_9.
Pełny tekst źródłaAplin, Robin T., i Carol V. Robinson. "Electrospray Ionization Mass Spectrometry: The Observation of Covalent, Ionic and Non-Covalent Interactions." W Mass Spectrometry in the Biological Sciences, 69–84. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-4612-0229-5_4.
Pełny tekst źródłaD’Urso, Alessandro, Maria Elena Fragalà i Roberto Purrello. "Non-Covalent Interactions of Porphyrinoids with Duplex DNA". W Topics in Heterocyclic Chemistry, 139–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/7081_2013_113.
Pełny tekst źródłaKataev, Evgeny A. "Non-covalent Interactions in the Synthesis of Macrocycles". W Non-covalent Interactions in the Synthesis and Design of New Compounds, 63–82. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch4.
Pełny tekst źródłaSagan, Filip, i Mariusz P. Mitoraj. "Non-covalent Interactions in Selected Transition Metal Complexes". W Transition Metals in Coordination Environments, 65–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_3.
Pełny tekst źródłaChetverina, Helena V., i Alexander B. Chetverin. "Identifying RNA Recombination Events and Non-covalent RNA–RNA Interactions with the Molecular Colony Technique". W RNA-RNA Interactions, 1–25. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1896-6_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Covalent Interactions"
Sanz, M., Jackson Tang, Elena Alonso, Isabel Peï¾–a, Donatella Loru, Ecaterina Burevschi, Shefali Saxena i S. Murugachandran. "INTERMOLECULAR NON-COVALENT INTERACTIONS REVEALED BY BROADBAND ROTATIONAL SPECTROSCOPY". W 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb01.
Pełny tekst źródłaCaminati, Walther, Emilio Cocinero, Alberto Lesarri, Montserrat Vallejo-López, Lorenzo Spada, Gang Feng, Luca Evangelisti i Qian Gou. "NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS". W 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rj16.
Pełny tekst źródłaFoguel, Lidor, Patrick Vaccaro i Zachary Vealey. "MICROSOLVATION AND THE EFFECTS OF NON-COVALENT INTERACTIONS ON INTRAMOLECULAR DYNAMICS". W 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.wd02.
Pełny tekst źródłaChoe, Junseok, Keonwoo Kim, Minjae Ju, Sumin Lee i Jaewoo Kang. "Improved Binding Affinity Prediction Using Non-Covalent Interactions and Graph Integration". W 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2022. http://dx.doi.org/10.1109/bigcomp54360.2022.00079.
Pełny tekst źródłaMelandri, Sonia, Laura Favero, Camilla Calabrese, Weixing Li, Imanol Gutierrez, Assimo Maris i Luca Evangelisti. "TUNING OF NON-COVALENT INTERACTIONS IN MOLECULAR COMPLEXES OF FLUORINATED AROMATIC COMPOUNDS". W 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.wk08.
Pełny tekst źródłaOliveira, Vytor, i Elfi Kraka. "The intrinsic strength of non-covalent interactions described by coupled cluster theory". W VII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Editora Letra1, 2018. http://dx.doi.org/10.21826/9788563800374068.
Pełny tekst źródłaMelandri, Sonia, Laura Favero, Weixing Li, Camilla Calabrese, Imanol Usabiaga, Luca Evangelisti i Assimo Maris. "NON-COVALENT INTERACTIONS IN COMPLEXES OF FLUORINATED AROMATIC RINGS INVESTIGATED BY ROTATIONAL SPECTROSCOPY". W 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb05.
Pełny tekst źródłaBelov, S. P., B. A. McElmurry, F. F. Willaert, R. R. Lucchese i J. Bevan. "Co-axially configured supersonic jet spectrometer for submillimeter investigations of non-covalent interactions". W 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665616.
Pełny tekst źródłaRackers, Joshua. "What can machine learning teach us about the limits of electron correlation?." W Proposed for presentation at the Non-Covalent Interactions in Large Molecules and Extended Materials in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884653.
Pełny tekst źródłaMa, Yingxian, Liqiang Huang, Zhi Zhu, Yurou Du, Jie Lai i Jianchun Guo. "A Supramolecular Thickener Based on Non-Covalent Enhancement Mechanism". W SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204299-ms.
Pełny tekst źródłaRaporty organizacyjne na temat "Covalent Interactions"
Nelson, Nathan, i Charles F. Yocum. Structure, Function and Utilization of Plant Photosynthetic Reaction Centers. United States Department of Agriculture, wrzesień 2012. http://dx.doi.org/10.32747/2012.7699846.bard.
Pełny tekst źródła