Gotowa bibliografia na temat „Coupled Thermomechanical Structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coupled Thermomechanical Structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Coupled Thermomechanical Structures"
Machairas, Theodoros T., Alexandros G. Solomou, Anargyros A. Karakalas i Dimitris A. Saravanos. "Effect of shape memory alloy actuator geometric non-linearity and thermomechanical coupling on the response of morphing structures". Journal of Intelligent Material Systems and Structures 30, nr 14 (10.07.2019): 2166–85. http://dx.doi.org/10.1177/1045389x19862362.
Pełny tekst źródłaSon, Myeong Jin, i Eui Sup Shin. "Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments". Journal of the Korean Society for Aeronautical & Space Sciences 47, nr 6 (30.06.2019): 414–21. http://dx.doi.org/10.5139/jksas.2019.47.6.414.
Pełny tekst źródłaKundu, Animesh, i Atanu Banerjee. "Coupled thermomechanical modelling of shape memory alloy structures undergoing large deformation". International Journal of Mechanical Sciences 220 (kwiecień 2022): 107102. http://dx.doi.org/10.1016/j.ijmecsci.2022.107102.
Pełny tekst źródłaBaker, Graham, i René de Borst. "An anisotropic thermomechanical damage model for concrete at transient elevated temperatures". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, nr 1836 (10.10.2005): 2603–28. http://dx.doi.org/10.1098/rsta.2005.1589.
Pełny tekst źródłaLi, Zhenghong, Yuheng Liu, Yafei Wang, Haibao Lu, Ming Lei i Yong Qing Fu. "3D Printing of Auxetic Shape-Memory Metamaterial Towards Designable Buckling". International Journal of Applied Mechanics 13, nr 01 (styczeń 2021): 2150011. http://dx.doi.org/10.1142/s1758825121500113.
Pełny tekst źródłaMa, Zhu, Changzheng Shi, Hegao Wu i Songzi Liu. "Structural Behavior of Massive Reinforced Concrete Structures Exposed to Thermomechanical Loads". Energies 15, nr 7 (6.04.2022): 2671. http://dx.doi.org/10.3390/en15072671.
Pełny tekst źródłaXu, Chenglong, i Zhi Liu. "Coupled CFD-FEM Simulation of Steel Box Bridge Exposed to Fire". Advances in Civil Engineering 2022 (10.01.2022): 1–12. http://dx.doi.org/10.1155/2022/5889743.
Pełny tekst źródłaSong, Ying, Renwei Liu, Shaofan Li, Zhuang Kang i Feng Zhang. "Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures". Meccanica 55, nr 4 (19.12.2019): 961–76. http://dx.doi.org/10.1007/s11012-019-01106-z.
Pełny tekst źródłaWang, Lixiang, Shihai Li, Guoxin Zhang, Zhaosong Ma i Lei Zhang. "A GPU-Based Parallel Procedure for Nonlinear Analysis of Complex Structures Using a Coupled FEM/DEM Approach". Mathematical Problems in Engineering 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/618980.
Pełny tekst źródłaTong, Fujuan, Wenxuan Gou, Lei Li, Wenjing Gao i Zhu Feng Yue. "Thermomechanical stress analysis for gas turbine blade with cooling structures". Multidiscipline Modeling in Materials and Structures 14, nr 4 (3.12.2018): 722–34. http://dx.doi.org/10.1108/mmms-08-2017-0081.
Pełny tekst źródłaRozprawy doktorskie na temat "Coupled Thermomechanical Structures"
Muller, Yannick. "Coupled thermomechanical fluid-structure interaction in the secondary air system of aircraft engines : contribution to an integrated design method". Valenciennes, 2009. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/94032a6b-3a17-4aaf-b07a-ce560f117b33.
Pełny tekst źródłaIn jet engines, the secondary air system, or SAS, takes care of a variety of important functions. In particular, secondary air flows control material temperatures and thermal expansion of engine parts, especially seal clearances. To check the fulfilment of these functions in the engine design phase, gas properties, temperatures, pressures and mass flow rates, must be accurately predicted. Up to now, the aerodynamic calculations leading to mass-flow rates, fluid pressures and temperatures and the thermal calculations yielding material temperatures are performed separately. A lot of interactions are neglected, the treatment of which would require numerous time consuming iterations. Indeed, material temperature changes lead to a modification of the expansion of the interacting parts yielding significant modifications in the gaps which control mass-flow rates. Since gap width has an important influence on the pressure losses, the interaction between aerodynamic, thermal and solid mechanics solution to the problem is expected to be important. The present investigation aims at taking this interaction into account in a robust analysis tool, combining SAS, thermal and mechanical analysis. An integrated program suite has been created, which allows to calculate these effects steady state. The basic concept is a network consisting of nodes representing the chambers and connected by pressure loss elements. Using a finite-element-compatible formulation, the network is embedded in a thermo-mechanical finite element model of the engine within an unique model and solved using the free software finite element CalculiX. This is done in the form of a module in which the gas pressure temperature and mass-flow are calculated based on the structural temperature and deformation of the previous iteration and serve as boundary conditions to the thermo-mechanical model for the next iteration
Desai, Akshay. "Topological Derivative-based Optimization of Fiber-reinforced Structures, Coupled Thermoelastic Structures, and Compliant Mechanisms". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5158.
Pełny tekst źródłaCzęści książek na temat "Coupled Thermomechanical Structures"
Chaithanya, Chenna Sai Krishna, Animesh Kundu i Atanu Banerjee. "Coupled Thermomechanical Analysis of SMA Structures". W Lecture Notes in Mechanical Engineering, 159–71. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8724-2_16.
Pełny tekst źródłaBarfusz, Oliver, Felix Hötte, Stefanie Reese i Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 265–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.
Pełny tekst źródłaMartin, Katharina, Dennis Daub, Burkard Esser, Ali Gülhan i Stefanie Reese. "Numerical Modelling of Fluid-Structure Interaction for Thermal Buckling in Hypersonic Flow". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 341–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_22.
Pełny tekst źródłaStreszczenia konferencji na temat "Coupled Thermomechanical Structures"
Panahandeh, Mohammad, i Eric P. Kasper. "Coupled thermomechanical simulation of shape memory alloys". W Smart Structures and Materials '97, redaktorzy Vasundara V. Varadan i Jagdish Chandra. SPIE, 1997. http://dx.doi.org/10.1117/12.276565.
Pełny tekst źródłaOterkus, Selda, i Erdogan Madenci. "Peridynamics for Fully Coupled Thermomechanical Analysis of Fiber Reinforced Laminates". W 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0694.
Pełny tekst źródłaPeigney, Michael. "A time-discretization scheme for coupled thermomechanical evolutions of shape memory alloys". W Smart Structures and Materials, redaktor William D. Armstrong. SPIE, 2006. http://dx.doi.org/10.1117/12.657368.
Pełny tekst źródłaODABAS, ONUR, i NESRIN SARIGUL-KLIJN. "On the coupled thermomechanical analysis of hypersonic flight vehicle structures". W AlAA 4th International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-5018.
Pełny tekst źródłaLewis, Nicole, i Stefan Seelecke. "Effects of Temperature Boundary Conditions on SMA Actuator Performance Using a Fully Coupled Thermomechanical Model". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5209.
Pełny tekst źródłaGuerin, Nicolas, Fabrice Thouverez, Claude Gibert, Mathias Legrand i Patricio Almeida. "Thermomechanical Component Mode Synthesis for Blade Casing Interaction Prediction". W ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64342.
Pełny tekst źródłaValente, T. "A new basic creep model coupled with a thermomechanical model for the numerical simulation of the time-dependent behaviour of concrete structures". W 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.232972.
Pełny tekst źródłaTabesh, Majid, Brian Lester, Darren Hartl i Dimitris Lagoudas. "Influence of the Latent Heat of Transformation and Thermomechanical Coupling on the Performance of Shape Memory Alloy Actuators". W ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8188.
Pełny tekst źródłaEshghinejad, Ahmadreza, i Mohammad Elahinia. "Exact Solution for Bending of Shape Memory Alloy Superelastic Beams". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5151.
Pełny tekst źródłaAgwai, Abigail, Ibrahim Guven i Erdogan Madenci. "Fully Coupled Peridynamic Thermomechanics". W 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1963.