Artykuły w czasopismach na temat „Coulomb blockade”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Coulomb blockade.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Coulomb blockade”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kaufman, Igor Kh, i Peter V. E. McClintock. "Ionic Coulomb blockade". Nature Materials 15, nr 8 (22.07.2016): 825–26. http://dx.doi.org/10.1038/nmat4701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kauppinen, J. P., i J. P. Pekola. "Coulomb blockade nanothermometer". Microelectronic Engineering 41-42 (marzec 1998): 503–6. http://dx.doi.org/10.1016/s0167-9317(98)00117-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hirvi, K. P., J. P. Kauppinen, A. N. Korotkov, M. A. Paalanen i J. P. Pekola. "Coulomb blockade thermometry". Czechoslovak Journal of Physics 46, S6 (czerwiec 1996): 3345–52. http://dx.doi.org/10.1007/bf02548151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Miao, Reng-lai Wu, Yabin Yu, Wei-qing Huang i Zheng Ma. "From the Coulomb blockade regime to the Non-Coulomb blockade regime". Physica B: Condensed Matter 454 (grudzień 2014): 82–85. http://dx.doi.org/10.1016/j.physb.2014.07.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pogosov, Artur, Maxim Budantsev, Andrey Shevyrin, Alexey Plotnikov, Ashat Bakarov i Aleksandr Toropov. "High-Temperature Coulomb Blockade". Siberian Journal of Physics 4, nr 2 (1.07.2009): 53–57. http://dx.doi.org/10.54362/1818-7919-2009-4-2-53-57.

Pełny tekst źródła
Streszczenie:
The Coulomb blockade effect is studied in a single-electron transistor – quantum dot, separated from source and drain areas by tunnel junctions. Peculiarity of the transistor is that it is made on the basis of semiconducting membrane, separated from the suffer. Separating the transistor from the suffer having high dielectric constant leads to the drastic decrease in the quantum dot capacity С and, therefore, to the increase in the Coulomb gap 2 e C/ . This value is important since it determines the upper limit of the transistor working temperature. A direct comparison of the Coulomb gaps before and after separating from the suffer shows that it increases from 40 K (in temperature units) for conventional transistor to 150 K for the «suspended» one. High value of the Coulomb gap has made it possible to observe clear diamond-like structure of condactance dependence on the gate and source-drain voltages, specific for the Coulomb blockade, while typical temperature of this kind of measurements on conventional single-electron transistors is about hundreds of millikelvins. An additional blockade effect, different from the conventional Coulomb blockade is observed. The nature of this effect can be connected with additional mechanical degrees of freedom of the transistor (elastic deformations).
Style APA, Harvard, Vancouver, ISO itp.
6

Hahtela, O., E. Mykkänen, A. Kemppinen, M. Meschke, M. Prunnila, D. Gunnarsson, L. Roschier, J. Penttilä i J. Pekola. "Traceable Coulomb blockade thermometry". Metrologia 54, nr 1 (20.12.2016): 69–76. http://dx.doi.org/10.1088/1681-7575/aa4f84.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pingue, P., V. Piazza, F. Beltram, I. Farrer, D. A. Ritchie i M. Pepper. "Coulomb blockade directional coupler". Applied Physics Letters 86, nr 5 (31.01.2005): 052102. http://dx.doi.org/10.1063/1.1857078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Xiang, Dao, Jian Wu i Reuven Gordon. "Coulomb Blockade Plasmonic Switch". Nano Letters 17, nr 4 (20.03.2017): 2584–88. http://dx.doi.org/10.1021/acs.nanolett.7b00360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

KUSMARTSEV, F. V. "COULOMB BLOCKADE INDUCED BY MAGNETIC FIELD". Modern Physics Letters B 06, nr 22 (20.09.1992): 1379–89. http://dx.doi.org/10.1142/s0217984992001083.

Pełny tekst źródła
Streszczenie:
We found that a Coulomb blockade can be induced by magnetic field. We illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a real Beresinski–Kosterlitz–Thouless phase transition if the ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field.
Style APA, Harvard, Vancouver, ISO itp.
10

Yuli V., Nazarov. "Coulomb Blockade without Tunnel Junctions". Journal of the Korean Physical Society 34, nr 92 (1.04.1999): 161. http://dx.doi.org/10.3938/jkps.34.161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Vasseur, G., D. Weinmann i R. A. Jalabert. "Coulomb blockade without potential barriers". European Physical Journal B 51, nr 2 (maj 2006): 267–75. http://dx.doi.org/10.1140/epjb/e2006-00210-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Nazarov, Yuli V. "Coulomb Blockade without Tunnel Junctions". Physical Review Letters 82, nr 6 (8.02.1999): 1245–48. http://dx.doi.org/10.1103/physrevlett.82.1245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Imam, H. T., V. V. Ponomarenko i D. V. Averin. "Coulomb blockade of resonant tunneling". Physical Review B 50, nr 24 (15.12.1994): 18288–98. http://dx.doi.org/10.1103/physrevb.50.18288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Matveev, K. A., i L. I. Glazman. "Coulomb blockade of activated conduction". Physical Review B 54, nr 15 (15.10.1996): 10339–41. http://dx.doi.org/10.1103/physrevb.54.10339.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Groshev, Atanas. "Coulomb blockade of resonant tunneling". Physical Review B 42, nr 9 (15.09.1990): 5895–98. http://dx.doi.org/10.1103/physrevb.42.5895.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tilke, A. "Coulomb blockade in silicon nanostructures". Progress in Quantum Electronics 25, nr 3 (maj 2001): 97–138. http://dx.doi.org/10.1016/s0079-6727(01)00005-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Glazman, L. I., F. W. J. Hekking, K. A. Matveev i R. I. Shekhter. "Coulomb blockade of Andreev reflection". Physica B: Condensed Matter 194-196 (luty 1994): 1245–46. http://dx.doi.org/10.1016/0921-4526(94)90952-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Molenkamp, L. W., i Karsten Flensberg. "Scaling of the Coulomb blockade". Physica B: Condensed Matter 218, nr 1-4 (luty 1996): 269–71. http://dx.doi.org/10.1016/0921-4526(95)00611-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Aleiner, I. L., P. W. Brouwer i L. I. Glazman. "Quantum effects in Coulomb blockade". Physics Reports 358, nr 5-6 (marzec 2002): 309–440. http://dx.doi.org/10.1016/s0370-1573(01)00063-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Krems, Matt, i Massimiliano Di Ventra. "Ionic Coulomb blockade in nanopores". Journal of Physics: Condensed Matter 25, nr 6 (10.01.2013): 065101. http://dx.doi.org/10.1088/0953-8984/25/6/065101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Mii, Takashi, i Kenji Makoshi. "Negative Conductance in Coulomb Blockade". Japanese Journal of Applied Physics 35, Part 1, No. 6B (30.06.1996): 3706–9. http://dx.doi.org/10.1143/jjap.35.3706.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shekhter, R. I., L. Y. Gorelik, A. Isacsson, Y. M. Galperin, Y. M. Galperin i M. Jonson. "Nanoelectromechanics of Coulomb Blockade Nanostructures". Physica Scripta T102, nr 1 (2002): 13. http://dx.doi.org/10.1238/physica.topical.102a00013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zhang, X. G., i T. Xiang. "Tunable coulomb blockade and giant coulomb blockade magnetoresistance in a double quantum dot system". International Journal of Quantum Chemistry 112, nr 1 (11.07.2011): 28–32. http://dx.doi.org/10.1002/qua.23196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Gudata, Lamessa, Jule Leta Tesfaye, Abela Saka, R. Shanmugam, L. Priyanka Dwarampudi, Nagaraj Nagaprasad, B. Stalin i Ramaswamy Krishnaraj. "Investigations of Optical Coulomb Blockade Oscillations in Plasmonic Nanoparticle Dimers". International Journal of Photoenergy 2022 (15.01.2022): 1–6. http://dx.doi.org/10.1155/2022/7771607.

Pełny tekst źródła
Streszczenie:
The exploration of Coulomb blockade oscillations in plasmonic nanoparticle dimers is the subject of this study. When two metal nanoparticles are brought together at the end of their journey, tunnelling current prevents an infinite connection dipolar plasmon and an infinite amplification in the electric fields throughout the hot spot in between nanoparticles from occurring. One way to think about single-electron tunnelling through some kind of quantum dot is to think about Coulomb blockage oscillations in conductance. The electron transport between the dot and source is considered. The model of study is the linear conductance skilled at describing the basic physics of electronic states in the quantum dot. The linear conductance through the dot is defined as G = lim ⟶ 0 I / V in the limit of infinity of small bias voltage. We discuss the classical and quantum metallic Coulomb blockade oscillations. Numerically, the linear conductance was plotted as a function gate voltage. The Coulomb blockade oscillation occurs as gate voltage varies. In the valleys, the conductance falls exponentially as a function gate voltage. As a result of our study, the conductance is constant at high temperature and does not show oscillation in both positive and negative gate voltages. At low temperature, conductance shows oscillation in both positive and negative gate voltages.
Style APA, Harvard, Vancouver, ISO itp.
25

Harata, Pipat, Wipada Hongthong i Prathan Srivilai. "Calculating the Coulomb blockade phase diagram in the strong coupling regime of a single-electron transistor: a quantum Monte Carlo study". Journal of Statistical Mechanics: Theory and Experiment 2024, nr 3 (21.03.2024): 033106. http://dx.doi.org/10.1088/1742-5468/ad319b.

Pełny tekst źródła
Streszczenie:
Abstract We present a novel approach for calculating the Coulomb blockade phase diagram (CBPD) in the experimentally accessible strong coupling regime of a single-electron transistor. Our method utilizes the path integral Monte Carlo technique to accurately compute the Coulomb oscillation of the differential capacitance (DC). Furthermore, we investigate the impact of the gate voltage and temperature variations on the DC, thereby gaining insights into the system’s behavior. As a result, we propose a method to calculate the Coulomb blockade boundary line and demonstrate its efficacy by setting the visibility parameter to 10%. The resulting boundary line effectively defines the transition between the Coulomb and non-Coulomb blockade regimes, thereby enabling the construction of a comprehensive CBPD.
Style APA, Harvard, Vancouver, ISO itp.
26

MA, QIONG, TAO TU, LI WANG, CHEN ZHOU, ZHI-RONG LIN, MING XIAO i GUO-PING GUO. "COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS". Modern Physics Letters B 27, nr 01 (26.11.2012): 1350008. http://dx.doi.org/10.1142/s0217984913500085.

Pełny tekst źródła
Streszczenie:
We study the conductance spectrum of graphene quantum dots, both single- and multiple-dot cases. The single electron tunneling through a graphene dot is investigated and the periodicity, amplitude and line shape of the Coulomb blockade oscillations at low temperatures are obtained, which are consistent with the recent experimental observations. Further, we discuss the transport behavior when multiple dots are assembled in array and find a phase transition of conductance spectra from individual Coulomb blockade to collective Coulomb blockade.
Style APA, Harvard, Vancouver, ISO itp.
27

Müller, H. O., D. A. Williams i H. Mizuta. "Design Optimization of Coulomb Blockade Devices". VLSI Design 13, nr 1-4 (1.01.2001): 193–98. http://dx.doi.org/10.1155/2001/29174.

Pełny tekst źródła
Streszczenie:
We investigate the design of a Coulomb blockade device consisting of a rectangular array of quantum dots or ultrasmall metallic islands with regard to its stability against geometric size disorder and offset charges. To simulate the device operation we perform a statistical analysis of the Coulomb blockade voltage which results in practical design rules.
Style APA, Harvard, Vancouver, ISO itp.
28

KRECH, W., i A. HÄDICKE. "EFFECTS OF MACROSCOPIC QUANTUM TUNNELING OF CHARGE IN ULTRASMALL SET DOUBLE-JUNCTIONS WITH EXTERNAL ELECTROMAGNETIC ENVIRONMENT". International Journal of Modern Physics B 07, nr 11 (15.05.1993): 2201–17. http://dx.doi.org/10.1142/s0217979293002845.

Pełny tekst źródła
Streszczenie:
It is known that classical Coulomb blockade effects of SET devices are disturbed by the tunneling effects of higher order denoted as macroscopic quantum tunneling of charge (q-mqt) or co-tunneling. The influence of an external electromagnetic environment modelled by an additional impedance in the circuit on the mean q-mqt current is studied in the high-impedance limit. This is important especially for devices containing only two SET junctions, for instance the SET electrometer, where the influence of the environment on the Coulomb blockade is remarkable. It can be shown that the Coulomb blockade is only partly destroyed producing a new, lower “quantum” Coulomb blockade. This holds as well in the case of the incoherent as of the coherent q-mqt. Furthermore, a method is presented on how to regularize the logarithmic singularities in the q-mqt current using line width effects.
Style APA, Harvard, Vancouver, ISO itp.
29

Vivitasari, Pipit Uky, Yasuo Azuma, Masanori Sakamoto, Toshiharu Teranishi i Yutaka Majima. "Coulomb blockade and Coulomb staircase behavior observed at room temperature". Materials Research Express 4, nr 2 (21.02.2017): 024004. http://dx.doi.org/10.1088/2053-1591/aa5bb3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Richardson, W. H. "Quantum Description of a Degenerate P-N Junction Coupled to an Electrical Circuit". International Journal of Modern Physics B 12, nr 24 (30.09.1998): 2513–40. http://dx.doi.org/10.1142/s0217979298001472.

Pełny tekst źródła
Streszczenie:
A theory of Coulomb blockade of tunneling in a degenerate p-n junction is presented. Perturbation theory and temperature Green's functions are used to obtain the current–voltage characteristics. The formulation extends the theory of Coulomb blockade in MIM junctions, to junctions in which the characteristics of the device, is partly determined by the many particle interaction in the electrodes. Exact analytical expressions for the I-V at zero temperature and approximate expressions at nonzero temperatures are obtained. Among the novel features observed are: an asymmetry in the current–voltage characteristics even for voltages on the scale of the Coulomb blockade threshold and threshold like behavior below (e/2C).
Style APA, Harvard, Vancouver, ISO itp.
31

Ladak, Sam, Dan Read, Tolek Tyliszczak, Will R. Branford i Lesley F. Cohen. "Monopole defects and magnetic Coulomb blockade". New Journal of Physics 13, nr 2 (10.02.2011): 023023. http://dx.doi.org/10.1088/1367-2630/13/2/023023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Pooley, D. M., H. Ahmed, H. Mizuta i K. Nakazato. "Coulomb blockade in silicon nano-pillars". Applied Physics Letters 74, nr 15 (12.04.1999): 2191–93. http://dx.doi.org/10.1063/1.123797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Oncel, Nuri, Ann-Sofie Hallback, Harold J. W. Zandvliet, Emiel A. Speets, Bart Jan Ravoo, David N. Reinhoudt i Bene Poelsema. "Coulomb blockade of small Pd clusters". Journal of Chemical Physics 123, nr 4 (22.07.2005): 044703. http://dx.doi.org/10.1063/1.1996567.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Song, D., A. Amar, C. J. Lobb i F. C. Wellstood. "Advantages of superconducting Coulomb-blockade electrometers". IEEE Transactions on Appiled Superconductivity 5, nr 2 (czerwiec 1995): 3085–89. http://dx.doi.org/10.1109/77.403244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zimmerli, G., T. M. Eiles, R. L. Kautz i John M. Martinis. "Noise in the Coulomb blockade electrometer". Applied Physics Letters 61, nr 2 (13.07.1992): 237–39. http://dx.doi.org/10.1063/1.108195.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Park, Hee Chul, Anatoli M. Kadigrobov, Robert I. Shekhter i M. Jonson. "Coulomb blockade of spin-dependent shuttling". Low Temperature Physics 39, nr 12 (grudzień 2013): 1071–77. http://dx.doi.org/10.1063/1.4830420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Groshev, Atanas. "Coulomb blockade with voltage-dependent capacitance". Physical Review B 47, nr 11 (15.03.1993): 6765–67. http://dx.doi.org/10.1103/physrevb.47.6765.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kauppinen, J. P., K. T. Loberg, A. J. Manninen, J. P. Pekola i R. A. Voutilainen. "Coulomb blockade thermometer: Tests and instrumentation". Review of Scientific Instruments 69, nr 12 (grudzień 1998): 4166–75. http://dx.doi.org/10.1063/1.1149265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Shin, Mincheol, Seongjae Lee, Kyoung Wan Park i El-Hang Lee. "Geometrically Induced Multiple Coulomb Blockade Gaps". Physical Review Letters 80, nr 26 (29.06.1998): 5774–77. http://dx.doi.org/10.1103/physrevlett.80.5774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Matveev, K. A. "Coulomb blockade at almost perfect transmission". Physical Review B 51, nr 3 (15.01.1995): 1743–51. http://dx.doi.org/10.1103/physrevb.51.1743.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Hekking, F. W. J., L. I. Glazman, K. A. Matveev i R. I. Shekhter. "Coulomb blockade of two-electron tunneling". Physical Review Letters 70, nr 26 (28.06.1993): 4138–41. http://dx.doi.org/10.1103/physrevlett.70.4138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Schelp, L. F., A. Fert, F. Fettar, P. Holody, S. F. Lee, J. L. Maurice, F. Petroff i A. Vaurès. "Spin-dependent tunneling with Coulomb blockade". Physical Review B 56, nr 10 (1.09.1997): R5747—R5750. http://dx.doi.org/10.1103/physrevb.56.r5747.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Geerligs, L. J., V. F. Anderegg i J. E. Mooij. "Coulomb blockade of cooper pair tunneling". Physica B: Condensed Matter 165-166 (sierpień 1990): 971–72. http://dx.doi.org/10.1016/s0921-4526(09)80071-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

van Houten, H. "Coulomb blockade oscillations in semiconductor nanostructures". Surface Science 263, nr 1-3 (luty 1992): 442–45. http://dx.doi.org/10.1016/0039-6028(92)90385-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Johannson, Jan, Volker Schöllmann, Karin Andersson i David B. Haviland. "Coulomb blockade in anodised titanium nanostructures". Physica B: Condensed Matter 284-288 (lipiec 2000): 1796–97. http://dx.doi.org/10.1016/s0921-4526(99)02984-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Bergsten, Tobias, Tord Claeson i Per Delsing. "A fast, primary Coulomb blockade thermometer". Applied Physics Letters 78, nr 9 (26.02.2001): 1264–66. http://dx.doi.org/10.1063/1.1351526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Patel, S. R., S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruöz, J. S. Harris, K. Campman i A. C. Gossard. "Statistics of Coulomb Blockade Peak Spacings". Physical Review Letters 80, nr 20 (18.05.1998): 4522–25. http://dx.doi.org/10.1103/physrevlett.80.4522.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Stampfer, C., J. Güttinger, F. Molitor, D. Graf, T. Ihn i K. Ensslin. "Tunable Coulomb blockade in nanostructured graphene". Applied Physics Letters 92, nr 1 (2008): 012102. http://dx.doi.org/10.1063/1.2827188.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Stopa, M. "Charging ratchets: Coulomb blockade and rectification". Applied Physics A 75, nr 2 (sierpień 2002): 247–52. http://dx.doi.org/10.1007/s003390201327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Walczak, Kamil. "Coulomb blockade in molecular quantum dots". Open Physics 4, nr 1 (1.03.2006): 8–19. http://dx.doi.org/10.1007/s11534-005-0002-x.

Pełny tekst źródła
Streszczenie:
AbstractThe rate-equation approach is used to describe sequential tunneling through a molecular junction in the Coulomb blockade regime. Such device is composed of molecular quantum dot (with discrete energy levels) coupled with two metallic electrodes via potential barriers. Based on this model, we calculate nonlinear transport characteristics (conductance-voltage and current-voltage dependences) and compare them with the results obtained within a self-consistent field approach. It is shown that the shape of transport characteristics is determined by the combined effect of the electronic structure of molecular quantum dots and by the Coulomb blockade. In particular, the following phenomena are discussed in detail: the suppression of the current at higher voltages, the charging-induced rectification effect, the charging-generated changes of conductance gap and the temperature-induced as well as broadening-generated smoothing of current steps.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii