Gotowa bibliografia na temat „Coulomb blockade”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coulomb blockade”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Coulomb blockade"

1

Kaufman, Igor Kh, i Peter V. E. McClintock. "Ionic Coulomb blockade". Nature Materials 15, nr 8 (22.07.2016): 825–26. http://dx.doi.org/10.1038/nmat4701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kauppinen, J. P., i J. P. Pekola. "Coulomb blockade nanothermometer". Microelectronic Engineering 41-42 (marzec 1998): 503–6. http://dx.doi.org/10.1016/s0167-9317(98)00117-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hirvi, K. P., J. P. Kauppinen, A. N. Korotkov, M. A. Paalanen i J. P. Pekola. "Coulomb blockade thermometry". Czechoslovak Journal of Physics 46, S6 (czerwiec 1996): 3345–52. http://dx.doi.org/10.1007/bf02548151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Miao, Reng-lai Wu, Yabin Yu, Wei-qing Huang i Zheng Ma. "From the Coulomb blockade regime to the Non-Coulomb blockade regime". Physica B: Condensed Matter 454 (grudzień 2014): 82–85. http://dx.doi.org/10.1016/j.physb.2014.07.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pogosov, Artur, Maxim Budantsev, Andrey Shevyrin, Alexey Plotnikov, Ashat Bakarov i Aleksandr Toropov. "High-Temperature Coulomb Blockade". Siberian Journal of Physics 4, nr 2 (1.07.2009): 53–57. http://dx.doi.org/10.54362/1818-7919-2009-4-2-53-57.

Pełny tekst źródła
Streszczenie:
The Coulomb blockade effect is studied in a single-electron transistor – quantum dot, separated from source and drain areas by tunnel junctions. Peculiarity of the transistor is that it is made on the basis of semiconducting membrane, separated from the suffer. Separating the transistor from the suffer having high dielectric constant leads to the drastic decrease in the quantum dot capacity С and, therefore, to the increase in the Coulomb gap 2 e C/ . This value is important since it determines the upper limit of the transistor working temperature. A direct comparison of the Coulomb gaps before and after separating from the suffer shows that it increases from 40 K (in temperature units) for conventional transistor to 150 K for the «suspended» one. High value of the Coulomb gap has made it possible to observe clear diamond-like structure of condactance dependence on the gate and source-drain voltages, specific for the Coulomb blockade, while typical temperature of this kind of measurements on conventional single-electron transistors is about hundreds of millikelvins. An additional blockade effect, different from the conventional Coulomb blockade is observed. The nature of this effect can be connected with additional mechanical degrees of freedom of the transistor (elastic deformations).
Style APA, Harvard, Vancouver, ISO itp.
6

Hahtela, O., E. Mykkänen, A. Kemppinen, M. Meschke, M. Prunnila, D. Gunnarsson, L. Roschier, J. Penttilä i J. Pekola. "Traceable Coulomb blockade thermometry". Metrologia 54, nr 1 (20.12.2016): 69–76. http://dx.doi.org/10.1088/1681-7575/aa4f84.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pingue, P., V. Piazza, F. Beltram, I. Farrer, D. A. Ritchie i M. Pepper. "Coulomb blockade directional coupler". Applied Physics Letters 86, nr 5 (31.01.2005): 052102. http://dx.doi.org/10.1063/1.1857078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Xiang, Dao, Jian Wu i Reuven Gordon. "Coulomb Blockade Plasmonic Switch". Nano Letters 17, nr 4 (20.03.2017): 2584–88. http://dx.doi.org/10.1021/acs.nanolett.7b00360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

KUSMARTSEV, F. V. "COULOMB BLOCKADE INDUCED BY MAGNETIC FIELD". Modern Physics Letters B 06, nr 22 (20.09.1992): 1379–89. http://dx.doi.org/10.1142/s0217984992001083.

Pełny tekst źródła
Streszczenie:
We found that a Coulomb blockade can be induced by magnetic field. We illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a real Beresinski–Kosterlitz–Thouless phase transition if the ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field.
Style APA, Harvard, Vancouver, ISO itp.
10

Yuli V., Nazarov. "Coulomb Blockade without Tunnel Junctions". Journal of the Korean Physical Society 34, nr 92 (1.04.1999): 161. http://dx.doi.org/10.3938/jkps.34.161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Coulomb blockade"

1

Kubala, Björn. "Quantentransport durch Coulomb-Blockade-Systeme". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982839146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ali, Danish. "Coulomb blockade in silicon-on-insulator". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Petej, Ivan. "Coulomb blockade and quantum conductance in ferromagnetic nanostructures". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270647.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wilson, Dominic Simon. "Scanning tunnelling spectroscopy of superconductors and Coulomb blockade effects". Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dovinos, Dimitris. "Charge transport in a Coulomb blockade island under irradiation". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619516.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Johansson, Jan. "Single Charge and Spin Transport in Nanostructures". Doctoral thesis, KTH, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Paul, Douglas John. "Single electronics in #delta#-doped silicon germanium". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Andersson, Karin. "Coulomb blockade of Cooper pair tunneling in one dimensional Josephson junction arrays". Doctoral thesis, KTH, Physics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Stegmann, Philipp [Verfasser], i Jürgen [Akademischer Betreuer] König. "Generalized factorial cumulants applied to Coulomb-blockade systems / Philipp Stegmann ; Betreuer: Jürgen König". Duisburg, 2017. http://d-nb.info/1136863990/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Fühner, Claus. "Magneto-transport investigations on multi-electron quantum dots Coulomb blockade, Kondo effect and Fano regime /". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967772753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Coulomb blockade"

1

1947-, Grabert Hermann, Devoret Michel H, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Study Institute on Single Charge Tunneling (1991 : Les Houches, Haute-Savoie, France), red. Single charge tunneling: Coulomb blockade phenomena in nanostructures. New York: Plenum Press, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Devoret, Michel H., i Hermann Grabert. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Devoret, Michel H., i Hermann Grabert. Single Charge Tunneling: Coulomb Blockade Phenomena In Nanostructures. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

(Editor), Hermann Grabert, i Michel H. Devoret (Editor), red. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (NATO Science Series: B:). Springer, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sergeenkov, Sergei. 2D arrays of Josephson nanocontacts and nanogranular superconductors. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.21.

Pełny tekst źródła
Streszczenie:
This article examines many novel effects related to the magnetic, electric, elastic and transport properties of Josephson nanocontacts and nanogranular superconductors using a realistic model of two-dimensional Josephson junction arrays. The arrays were created by a 2D network of twin-boundary dislocations with strain fields acting as an insulating barrier between hole-rich domains in underdoped crystals. The article first describes a model of nanoscopic Josephson junction arrays before discussing some interesting phenomena, including chemomagnetism and magnetoelectricity, electric analog of the ‘fishtail‘ anomaly and field-tuned weakening of the chemically induced Coulomb blockade, a giant enhancement of the non-linear thermal conductivity in 2D arrays, and thermal expansion of a singleJosephson contact.
Style APA, Harvard, Vancouver, ISO itp.
6

Tiwari, Sandip. Phenomena and devices at the quantum scale and the mesoscale. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0003.

Pełny tekst źródła
Streszczenie:
Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Coulomb blockade"

1

Kawabata, A. "Coulomb Blockade". W Mesoscopic Physics and Electronics, 31–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Khademi, Ali, Dao Xiang i Reuven Gordon. "Coulomb Blockade Plasmonic Switch". W 21st Century Nanoscience – A Handbook, 15–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351617-15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wharam, D. A., i T. Heinzel. "Coulomb Blockade in Quantum Dots". W Quantum Dynamics of Submicron Structures, 311–25. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Matveev, K. A. "Quantum Smearing of Coulomb Blockade". W Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 129–43. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4327-1_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Van Houten, H., C. W. J. Beenakker i A. A. M. Staring. "Coulomb-Blockade Oscillations in Semiconductor Nanostructures". W NATO ASI Series, 167–216. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-2166-9_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ryndyk, Dmitry A. "Electron-Electron Interaction and Coulomb Blockade". W Springer Series in Solid-State Sciences, 123–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24088-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Abusch-Magder, David, M. A. Kastner, C. L. Dennis, W. F. Dinatale, T. M. Lyszczarz, D. C. Shaver i P. M. Mankiewich. "Coulomb Blockade in a Silicon Mosset". W Quantum Transport in Semiconductor Submicron Structures, 251–60. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Akai-Kasaya, Megumi. "Coulomb-Blockade in Low-Dimensional Organic Conductors". W Molecular Architectonics, 111–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57096-9_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Beenakker, C. W. J., H. van Houten i A. A. M. Staring. "Coulomb Blockade of the Aharonov-Bohm Effect". W Granular Nanoelectronics, 359–70. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kim, Jungsang, Seema Somani i Yoshihisa Yamamoto. "Coulomb Blockade Effect in Mesoscopic p-n Junctions". W Nonclassical Light from Semiconductor Lasers and LEDs, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56814-5_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Coulomb blockade"

1

Shekhter, R. I., L. Y. Gorelik, A. Isacsson, Y. M. Galperin i M. Jonson. "Nanoelectromechanics of Coulomb Blockade Nanostructures". W Proceedings of the Nobel Jubilee Symposium. CO-PUBLISHED WITH PHYSICA SCRIPTA AND THE ROYAL SWEDISH ACADEMY OF SCIENCES, 2003. http://dx.doi.org/10.1142/9789812791269_0003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Webb, R. A., V. Chandrasekhar i Z. Ovadyahu. "Coulomb blockade effects in disordered wires". W Molecular electronics—Science and Technology. AIP, 1992. http://dx.doi.org/10.1063/1.42660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fraboulet, D., X. Jehl, D. Mariolle, C. Le Royer, G. Le Carval, P. Scheiblin, P. Rivallin i in. "Coulomb Blockade in Thin SOI Nanodevices". W 32nd European Solid-State Device Research Conference. IEEE, 2002. http://dx.doi.org/10.1109/essderc.2002.194951.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kaufman, I. Kh, W. Gibby, D. G. Luchinsky, P. V. E. McClintock i R. S. Eisenberg. "Coulomb blockade oscillations in biological ion channels". W 2015 International Conference on Noise and Fluctuations (ICNF). IEEE, 2015. http://dx.doi.org/10.1109/icnf.2015.7288558.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chen, I. H., C. C. Wang i P. W. Li. "Designer Ge quantum dots Coulomb blockade thermometry". W 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2014. http://dx.doi.org/10.1109/vlsi-tsa.2014.6839670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Barua, Sourabh, Rohan Poojary i K. P. Rajeev. "Observation of Coulomb blockade and Coulomb staircase in a lateral metal nanostructure". W SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hahtela, O. M., M. Meschke, A. Savin, D. Gunnarsson, M. Prunnila, J. S. Penttilä, L. Roschier, M. Heinonen, A. Manninen i J. P. Pekola. "Investigation of uncertainty components in Coulomb blockade thermometry". W TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 8: Proceedings of the Ninth International Temperature Symposium. AIP, 2013. http://dx.doi.org/10.1063/1.4819529.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

AMAHA, SHINICHI, TSUYOSHI HATANO, SATOSHI SASAKI, TOSHIHIRO KUBO, YASUHIRO TOKURA i SEIGO TARUCHA. "COULOMB BLOCKADE PROPERTIES OF 4-GATED QUANTUM DOT". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

van Kempen, H., R. T. M. Smokers i P. J. M. vanBentum. "The Coulomb Blockade in STM-type Tunnel Junctions". W Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hahtela, O. M., A. Kemppinen, J. Lehtinen, A. J. Manninen, E. Mykkanen, M. Prunnila, N. Yurttagul i in. "Coulomb Blockade Thermometry on a Wide Temperature Range". W 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Coulomb blockade"

1

Ai, Nan, Onejae Sul, Milan Begliarbekov, Qiang Song, Kitu Kumar, Daniel S. Choi, Eui-Hyeok Yang i Stefan Strauf. Transconductance and Coulomb Blockade Properties of In-Plane Grown Carbon Nanotube Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2010. http://dx.doi.org/10.21236/ada524117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cleland, A. N. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions. Office of Scientific and Technical Information (OSTI), kwiecień 1991. http://dx.doi.org/10.2172/5511727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzec 2021. http://dx.doi.org/10.53109/ypdh3824.

Pełny tekst źródła
Streszczenie:
The performance and accuracy of quantum electronics is substantially degraded when the temperature of the electrons in the devices is too high. The electron temperature can be reduced with appropriate thermal anchoring and by filtering both the low frequency and radio frequency noise. Ultimately, for high performance filters the electron temperature can approach the phonon temperature (as measured by resistive thermometers) in a dilution refrigerator. In this application note, the method for measuring the electron temperature in a typical quantum electronics device using Coulomb blockade thermometry is described. This technique is applied to find the readily achievable electron temperature in the device when using the QFilter provided by QDevil. With our thermometry measurements, using a single GaAs/AlGaAs quantum dot in an optimized experimental setup, we determined an electron temperature of 28 ± 2 milli-Kelvin for a dilution refrigerator base temperature of 18 milli-Kelvin.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii