Gotowa bibliografia na temat „Corrosion Science and Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Corrosion Science and Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Corrosion Science and Engineering"
Latanision, R. M. "Corrosion Science, Corrosion Engineering, and Advanced Technologies". CORROSION 51, nr 4 (kwiecień 1995): 270–83. http://dx.doi.org/10.5006/1.3293592.
Pełny tekst źródłaAshworth, V. "‘Corrosion for science and engineering’". British Corrosion Journal 32, nr 4 (styczeń 1997): 240. http://dx.doi.org/10.1179/bcj.1997.32.4.240.
Pełny tekst źródłaRobert P.Wei i Ryuichiro EBARA. "Corrosion Fatigue : Science And Engineering". Journal of the Society of Mechanical Engineers 91, nr 841 (1988): 1214–19. http://dx.doi.org/10.1299/jsmemag.91.841_1214.
Pełny tekst źródłaLyon, S. "Corrosion for science and engineering". Corrosion Science 38, nr 8 (sierpień 1996): 1425–26. http://dx.doi.org/10.1016/0010-938x(96)89787-3.
Pełny tekst źródłaGreen, Warren. "CORROSION Special Issue: Australasian Corrosion Association’s Advances in Corrosion Science and Corrosion Engineering". Corrosion 76, nr 5 (1.05.2020): 439–40. http://dx.doi.org/10.5006/3541.
Pełny tekst źródłaMacdonald, D. D., i M. Urquidi-Macdonald. "Corrosion Damage Function—Interface between Corrosion Science and Engineering". CORROSION 48, nr 5 (maj 1992): 354–67. http://dx.doi.org/10.5006/1.3315945.
Pełny tekst źródłaWalker, Robert. "Corrosion for students of science and engineering". British Corrosion Journal 23, nr 2 (styczeń 1988): 87–88. http://dx.doi.org/10.1179/000705988798271018.
Pełny tekst źródłaProcter, R. P. M. "Corrosion science and engineering: some recent developments". Materials Science and Engineering: A 184, nr 2 (sierpień 1994): 135–53. http://dx.doi.org/10.1016/0921-5093(94)91027-8.
Pełny tekst źródłaNewman, R. C. "Corrosion for students of science and engineering". Corrosion Science 28, nr 7 (styczeń 1988): 741–42. http://dx.doi.org/10.1016/0010-938x(88)90051-0.
Pełny tekst źródłaLi, Tianrun, Debin Wang, Suode Zhang i Jianqiang Wang. "Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview". Metals 13, nr 2 (10.02.2023): 363. http://dx.doi.org/10.3390/met13020363.
Pełny tekst źródłaRozprawy doktorskie na temat "Corrosion Science and Engineering"
Gibbs, Jonathan Paul. "Corrosion of various engineering alloys in supercritical carbon dioxide". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59247.
Pełny tekst źródła"June 2010."
Includes bibliographical references.
The corrosion resistance of ten engineering alloys were tested in a supercritical carbon dioxide (S-CO 2) environment for up to 3000 hours at 610°C and 20MPa. The purpose of this work was to evaluate each alloy as a potential candidate for use in the S-CO2 cooled next generation nuclear reactors. The alloys that performed well in these tests will undergo further testing and those that performed poorly will be disqualified from future deployment in S-CO2 applications. The ten alloys tested in this work were classified into four categories: Ferritic-martenitic steels, austenitic stainless steels, nickel alloys, and special materials. The majority of the alloys were focused on the five alloys within the austenitic stainless steel series, followed by three nickel alloys. These alloys were F91, HCM12A, 316SS, 31OSS, AL-6XN, 800H, Haynes 230, Alloy 625, PE-16, and PM2000. The experimental procedure consisted of placing multiple samples of each alloy in an autoclave and exposing them to S-CO2 for up to 3000 hours, in 500 hour increments. At every 500 hour increment each alloy was removed from the autoclave, photo documented and weighed. One sample from each 500 hour test was reserved for future analysis while the other samples were returned to the autoclave for further testing. The 3000 hour samples were sectioned, mounted in epoxy, and polished oriented normal to its oxide growth to document the thickness and structure of each oxide layer formed. Alloys F91 and HCM12A performed poorly and experienced substantial weight gain. Each of these alloys formed a duplex oxide layer with the outside layer being iron rich and chromium depleted and the inside layer being iron depleted and chromium rich. The oxide layers were porous and were susceptible to spallation. The 3000 hour weight gain for both of these alloys was approximately 5x10-3 mg/cm2, which was two orders of magnitude higher than the remaining eight alloys. Alloys PM2000, 316SS, 31OSS, AL- 6XN, 800H, Haynes 230, Alloy 625, and PE-16 were stable oxide formers with thin, dense oxide layers and were resistant to corrosion. The weight gain of these eight alloys was on the order of 4x10 5 mg/cm 2 at 3000 hours of exposure. Overall, the alloys with high chromium and nickel contents performed the best, followed by the stainless steels with intermediate chromium content.
by Jonathan Paul Gibbs.
S.M.
Li, Duanjie. "Microstructure and corrosion and tribo-corrosion behaviors of Si-based and Ti-based aerospace coatings produced by PECVD". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95138.
Pełny tekst źródłaLa microstructure et le comportement en corrosion et en tribo-corrosion des revêtements à base de titane et de silicium ont été systématiquement étudiés. Une série de ces revêtements contenant différentes composition de silicium (Si) et/ou de carbone (C) ont été préparés par déposition chimique en phase vapeur assistée par plasma (PECVD). Différentes techniques expérimentales ont été utilisées pour la caractérisation de la microstructure des revêtements. Un raffinement de la taille des grains s'est produit lors de l'incorporation du Si ou du C dans la composition du revêtement TiN. Au même temps, la microstructure du revêtement a changé et une transition de la microstructure de colonnaire à celle nanocomposite, dense et homogène a été observée pour les revêtements nc-TiN/a-SiNx and nc-TiCN/a-SiCN. Cela a permit de rehausser la résistance à la corrosion d'un facteur de ~20 comparé au TiN. La structure de l'interface du système de revêtement TiN a été conçue de façon à ce que la dureté augmente graduellement avec la distance entre le substrat et la surface du revêtement. Cela a été réalisé en appliquant une couche intermédiaire de chrome (Cr) dans le but de rehausser l'adhésion et simultanément d'augmenter la capacité de chargement. En plus, la couche de Cr a permit l'augmentation de la résistance â la corrosion des revêtements nanocomposites à base de TiN. Les revêtements Ti-Si-C sont principalement constitués de particules nanocristallines de TiC incorporées dans une matrice amorphe a-SiCx:H and a-C:H. Le raffinement de la taille des grains de TiC et l'augmentation de la fraction de phase amorphe se produit lorsque plus de Si et/ou de C sont incorporés dans les revêtements Ti-Si-C. Cela a permit d'améliorer les propriétés électrochimiques du Ti-Si-C, lequel peut être attribué à la résistance à la corrosion supérieure et a la densité et l'homogénéité de la matrice -SiCx:H and a-C:H qui e
Li, Kwan (Kwan Hon). "Microbially influenced corrosion in sour environments". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/88382.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 119-123).
Microbially influenced corrosion (MIC) is a costly and poorly understood source of corrosion that plagues many modern industrial processes such as oil extraction and transportation. Throughout the years, many possible mechanisms for MIC have been proposed. One specific proposed mechanism was tested in this thesis: that the metal-binding characteristic of bacterial biofilms enhanced corrosion when it appears in conjunction with an iron sulfide film. Two model biogels were used: calcium alginate, which has this metal-binding property, and agarose, which does not. In pursuit of this hypothesis, iron sulfide films were grown on mild steel coupons. Two distinct forms of iron sulfides were grown: a loose black product at low sulfide concentrations, and an adherent gold product at high sulfide concentrations. Many materials characterization techniques were attempted, and the black corrosion product was found to be a mixture of greigite and marcasite. However, this composition was observed to change irreversibly with the application of a laser that caused the material to either heat and/or dry. The resulting golden-colored corrosion product was found to consist mainly of monosulfides, implying the presence of mackinawite or pyrrhotite. By using electrochemical polarization experiments, it was found that calcium alginate enhanced the rate of corrosion; agarose reduced the rate of corrosion. This is in contrast to previously published literature. Contrary to the initial hypothesis, adding an underlying iron sulfide film did not appreciably alter the measured rate of corrosion. Additionally, it was found that biofilms generated by sulfate-reducing bacteria (SRB) enhanced corrosion in a manner similar to the calcium alginate gel, and lysing the cells within the biofilm did nothing to alter this effect. This implies that the biofilm itself, even in the absence of active bacterial metabolic activity, can enhance corrosion rates observed in MIC.
by Kwan Li.
S.M.
Swanson, Orion John. "Corrosion of High-Entropy Alloys in Chloride Solutions". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532709505615889.
Pełny tekst źródłaGenkin, Jean-Marc P. (Jean-Marc Patrick). "Corrosion fatigue performance of alloy 6013-T6". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33519.
Pełny tekst źródłaZhang, Liming 1966. "Contamination and galvanic corrosion in metal chemical-mechanical planarization". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282840.
Pełny tekst źródłaGenkin, Jean-Marc P. (Jean-Marc Patrick). "Corrosion fatigue crack initiation in 2091-T351 Alclad". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/41792.
Pełny tekst źródłaChen, Xi. "Corrosion Resistance Assessment of Pretreated Magnesium Alloys". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1282837277.
Pełny tekst źródłaTamilmani, Subramanian. "Dissolution, corrosion and environmental issues in chemical mechanical planarization of copper". Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/280774.
Pełny tekst źródłaZhang, Bo. "Development of corrosion resistant galvanising alloys". Thesis, University of Birmingham, 2005. http://etheses.bham.ac.uk//id/eprint/221/.
Pełny tekst źródłaKsiążki na temat "Corrosion Science and Engineering"
Pedeferri, Pietro. Corrosion Science and Engineering. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9.
Pełny tekst źródłaRevie, R. Winston. Corrosion and corrosion control: An introduction to corrosion science and engineering. Wyd. 4. Hoboken, N.J: J. Wiley, 2008.
Znajdź pełny tekst źródła1944-, Revie R. Winston, red. Corrosion and corrosion control: An introduction to corrosion science and engineering. Wyd. 3. New York: Wiley, 1985.
Znajdź pełny tekst źródłaDavid, Talbot. Corrosion science and technology. Boca Raton, Fla: CRC Press, 1998.
Znajdź pełny tekst źródłaDavid, Talbot. Corrosion science and technology. Boca Raton: CRC Press, 1998.
Znajdź pełny tekst źródłaG, Kelly R., red. Electrochemical techniques in corrosion science and engineering. New York, NY: Marcel Dekker, 2003.
Znajdź pełny tekst źródłaPyun, Su-Il, i Jong-Won Lee, red. Progress in Corrosion Science and Engineering II. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-5578-4.
Pełny tekst źródła1953-, Marcus P., i Mansfeld Florian, red. Analytical methods in corrosion science and engineering. Boca Raton: Taylor & Francis/CRC Press, 2006.
Znajdź pełny tekst źródła1934-, Chamberlain John, red. Corrosion for students of science and engineering. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Znajdź pełny tekst źródłaCorrosion engineering handbook.: Atmospheric and media corrosion of metals. Wyd. 2. Boca Raton: CRC Press, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Corrosion Science and Engineering"
Pedeferri, Pietro. "Stress Corrosion Cracking and Corrosion-Fatigue". W Corrosion Science and Engineering, 243–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_13.
Pełny tekst źródłaPedeferri, Pietro. "Galvanic Corrosion". W Corrosion Science and Engineering, 183–206. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_10.
Pełny tekst źródłaPedeferri, Pietro. "Pitting Corrosion". W Corrosion Science and Engineering, 207–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_11.
Pełny tekst źródłaPedeferri, Pietro. "Crevice Corrosion". W Corrosion Science and Engineering, 231–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_12.
Pełny tekst źródłaPedeferri, Pietro. "Atmospheric Corrosion". W Corrosion Science and Engineering, 479–508. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_22.
Pełny tekst źródłaPedeferri, Pietro. "Corrosion Factors". W Corrosion Science and Engineering, 119–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_7.
Pełny tekst źródłaPedeferri, Pietro. "Corrosion in Waters". W Corrosion Science and Engineering, 423–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_20.
Pełny tekst źródłaPedeferri, Pietro. "Corrosion in Soil". W Corrosion Science and Engineering, 447–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_21.
Pełny tekst źródłaPedeferri, Pietro. "Corrosion in Concrete". W Corrosion Science and Engineering, 509–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_23.
Pełny tekst źródłaPedeferri, Pietro. "High Temperature Corrosion". W Corrosion Science and Engineering, 589–610. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97625-9_26.
Pełny tekst źródłaStreszczenia konferencji na temat "Corrosion Science and Engineering"
Macdonald, Digby. "Determinism in Science and Engineering". W 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09995.
Pełny tekst źródłaEbert, Thomas, Marcus Pajunk, Dirk Mueller i Wilhelm Priesterath. "New generation of corrosion-resistant microcoolers". W Lasers and Applications in Science and Engineering, redaktor Mark S. Zediker. SPIE, 2005. http://dx.doi.org/10.1117/12.590340.
Pełny tekst źródłaTan, Wei Chian, Phoi Chin Goh, Kie Hian Chua i I.-Ming Chen. "Learning with Corrosion Feature: For Automated Quantitative Risk Analysis of Corrosion Mechanism". W 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). IEEE, 2018. http://dx.doi.org/10.1109/coase.2018.8560399.
Pełny tekst źródłaYou, Limei, Dongqiang Peng, Linyan Zhou, Feng Li, Canfeng Zhao, Chunxia Wang i Changjie Feng. "Acid Pickling Process of Titanium alloys and its Investigation of intergranular corrosion and Pitting corrosion". W 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.300.
Pełny tekst źródła"Study on Corrosion Inhibition and Adsorption of Polyaspartic Acid Corrosion Inhibitor to Seawater Copper". W 2018 International Conference on Biomedical Engineering, Machinery and Earth Science. Francis Academic Press, 2018. http://dx.doi.org/10.25236/bemes.2018.031.
Pełny tekst źródłaParadis, François. "Corrosion products formed in mortar". W 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.040.
Pełny tekst źródłaWen, Weiling, Tian Liu, Mihaela Banu, Joseph Simmer, Blair Carlson i S. Jack Hu. "Corrosion Evolution in Al/Steel Dissimilar Joints". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8443.
Pełny tekst źródłaCheng, Jingfu, Eryu Zhu i Cairan Zhang. "The Corrosion Control of Posttentioned System". W 2009 1st International Conference on Information Science and Engineering (ICISE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.1193.
Pełny tekst źródłaPalupi, Aisyah E., Arya M. Sakti, Bellina Yunitasari, Suparji i Setya C. Wibawa. "3D Blender Animation Media as Self-Assessment Implementation in Corrosion Engineering Course". W International Joint Conference on Science and Engineering (IJCSE 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aer.k.201124.044.
Pełny tekst źródłaNaser, Shaimaa Alaa, Ali Amer Hameed i Maha Alaa Hussein. "Corrosion behavior of some jewelries in artificial sweat". W 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE (IConMEAS 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000111.
Pełny tekst źródłaRaporty organizacyjne na temat "Corrosion Science and Engineering"
Lesuer, D. R. Materials science and engineering. Office of Scientific and Technical Information (OSTI), styczeń 1998. http://dx.doi.org/10.2172/15009526.
Pełny tekst źródłaLesuer, D. R. Materials Science and Engineering. Office of Scientific and Technical Information (OSTI), marzec 1993. http://dx.doi.org/10.2172/10194532.
Pełny tekst źródłaLesuer, D. R. Materials science and engineering. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/623044.
Pełny tekst źródłaBeavers, John, i Gregory Quickel. PR-186-09204-R01 Determining the Effects of Ethanol on Pump Station Facilities. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2010. http://dx.doi.org/10.55274/r0010706.
Pełny tekst źródłaAllocca, Clare, i Stephen Freiman. Materials Science and Engineering Laboratory :. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7130.
Pełny tekst źródłaRotman, D. Earth Systems Science and Engineering. Office of Scientific and Technical Information (OSTI), luty 2006. http://dx.doi.org/10.2172/928198.
Pełny tekst źródłaFarrar, Charles Reed. Science, Engineering & Technology Los Alamos Judicial Science School. Office of Scientific and Technical Information (OSTI), luty 2020. http://dx.doi.org/10.2172/1601596.
Pełny tekst źródłaDEFENSE SCIENCE BOARD WASHINGTON DC. Defense Science Board Report on Corrosion Control. Fort Belvoir, VA: Defense Technical Information Center, październik 2004. http://dx.doi.org/10.21236/ada428767.
Pełny tekst źródłaAnderson, Hazel. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM). Fort Belvoir, VA: Defense Technical Information Center, sierpień 2013. http://dx.doi.org/10.21236/ada591097.
Pełny tekst źródłaDr. Wynn Volkert, Dr. Arvind Kumar, Dr. Bryan Becker, Dr. Victor Schwinke, Dr. Angel Gonzalez i Dr. DOuglas McGregor. Midwest Nuclear Science and Engineering Consortium. Office of Scientific and Technical Information (OSTI), grudzień 2010. http://dx.doi.org/10.2172/1000076.
Pełny tekst źródła