Artykuły w czasopismach na temat „Core-shell Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Core-shell Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Arici, Elif, Dieter Meissner, F. Schäffler i N. Serdar Sariciftci. "Core/shell nanomaterials in photovoltaics". International Journal of Photoenergy 5, nr 4 (2003): 199–208. http://dx.doi.org/10.1155/s1110662x03000333.
Pełny tekst źródłaRibeiro, Mota, Júnior, Lima, Fechine, Denardin, Carbone, Bloise, Mele i Mazzetto. "Nanomaterials Based on Fe3O4 and Phthalocyanines Derived from Cashew Nut Shell Liquid". Molecules 24, nr 18 (9.09.2019): 3284. http://dx.doi.org/10.3390/molecules24183284.
Pełny tekst źródłaTsamos, Dimitris, Athina Krestou, Maria Papagiannaki i Stergios Maropoulos. "An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications". Metals 12, nr 4 (31.03.2022): 605. http://dx.doi.org/10.3390/met12040605.
Pełny tekst źródłaSepahvand, R., S. Alihosseini, M. Adeli i P. Sasanpour. "Fullerene-Gold Core-Shell Structures and Their Self-Assemblies". International Journal of Nanoscience 16, nr 02 (24.01.2017): 1650029. http://dx.doi.org/10.1142/s0219581x16500290.
Pełny tekst źródłaZhang, Xiao-kai, Lei Xia, Xue Li i Lian-dong Liu. "Preparation and spectral properties of CuSe/ZnSe core-shell nanomaterials". Europhysics Letters 136, nr 2 (1.10.2021): 26001. http://dx.doi.org/10.1209/0295-5075/136/26001.
Pełny tekst źródłaLoghina, Liudmila, Maksym Chylii, Anastasia Kaderavkova, Stanislav Slang, Petr Svec, Jhonatan Rodriguez Pereira, Bozena Frumarova, Miroslav Cieslar i Miroslav Vlcek. "Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis". Nanomaterials 11, nr 10 (5.10.2021): 2616. http://dx.doi.org/10.3390/nano11102616.
Pełny tekst źródłaRakgalakane, B. P., i M. J. Moloto. "Aqueous Synthesis and Characterization of CdSe/ZnO Core-Shell Nanoparticles". Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/514205.
Pełny tekst źródłaMallick, Sadhucharan, Kshitij RB Singh, Vanya Nayak, Jay Singh i Ravindra Pratap Singh. "Potentialities of core@shell nanomaterials for biosensor technologies". Materials Letters 306 (styczeń 2022): 130912. http://dx.doi.org/10.1016/j.matlet.2021.130912.
Pełny tekst źródłaKalambate, Pramod K., Dhanjai, Zhimei Huang, Yankai Li, Yue Shen, Meilan Xie, Yunhui Huang i Ashwini K. Srivastava. "Core@shell nanomaterials based sensing devices: A review". TrAC Trends in Analytical Chemistry 115 (czerwiec 2019): 147–61. http://dx.doi.org/10.1016/j.trac.2019.04.002.
Pełny tekst źródłaWang, Lingyan, Hye-Young Park, Stephanie I.-Im Lim, Mark J. Schadt, Derrick Mott, Jin Luo, Xin Wang i Chuan-Jian Zhong. "Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles". Journal of Materials Chemistry 18, nr 23 (2008): 2629. http://dx.doi.org/10.1039/b719096d.
Pełny tekst źródłaKumar, K. Santhosh, Vijay Bhooshan Kumar i Pradip Paik. "Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology". Journal of Nanoparticles 2013 (25.03.2013): 1–24. http://dx.doi.org/10.1155/2013/672059.
Pełny tekst źródłaIqbal, W., M. Mekki, W. Rehman, B. Shahzad, U. Anwar, S. Mahmood i Md E. Talukder. "Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method". Digest Journal of Nanomaterials and Biostructures 18, nr 1 (20.04.2023): 403–10. http://dx.doi.org/10.15251/djnb.2023.181.403.
Pełny tekst źródłaChen, Liyu, Binbin Huang, Xuan Qiu, Xi Wang, Rafael Luque i Yingwei Li. "Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts". Chemical Science 7, nr 1 (2016): 228–33. http://dx.doi.org/10.1039/c5sc02925b.
Pełny tekst źródłaSingh, Haobijam Johnson, i Ambarish Ghosh. "Harnessing magnetic dipole resonance in novel dielectric nanomaterials". Nanoscale 10, nr 34 (2018): 16102–6. http://dx.doi.org/10.1039/c8nr04666b.
Pełny tekst źródłaWerner, Wolfgang S. M., Martin Hronek, Michael Stöger Pollach i Henryk Kalbe. "Characterisation of nanomaterials: XPS analysis of Core-Shell Nanoparticles". Journal of Surface Analysis 26, nr 2 (2019): 102–3. http://dx.doi.org/10.1384/jsa.26.102.
Pełny tekst źródłaO’Mullane, Anthony. "Realizing Solid Core/Liquid Shell Nanomaterials at Room Temperature". Matter 1, nr 1 (lipiec 2019): 22–23. http://dx.doi.org/10.1016/j.matt.2019.06.006.
Pełny tekst źródłaFeng, Hao-peng, Lin Tang, Guang-ming Zeng, Yaoyu Zhou, Yao-cheng Deng, Xiaoya Ren, Biao Song, Chao Liang, Meng-yun Wei i Jiang-fang Yu. "Core-shell nanomaterials: Applications in energy storage and conversion". Advances in Colloid and Interface Science 267 (maj 2019): 26–46. http://dx.doi.org/10.1016/j.cis.2019.03.001.
Pełny tekst źródłaGuo, Qiang, Yongli Wan, Bingbing Hu i Xitao Wang. "Carbon-nitride-based core–shell nanomaterials: synthesis and applications". Journal of Materials Science: Materials in Electronics 29, nr 23 (8.10.2018): 20280–301. http://dx.doi.org/10.1007/s10854-018-0162-2.
Pełny tekst źródłaShaktawat, Sarita, Kshitij RB Singh, Sushma Thapa, Ranjana Verma, Jay Singh i Ravindra Pratap Singh. "Optical characteristics and biosensing application of core@shell nanomaterials". Materials Letters: X 17 (marzec 2023): 100187. http://dx.doi.org/10.1016/j.mlblux.2023.100187.
Pełny tekst źródłaSun, Zhipeng, i Ruiying Wang. "Editorial: Core–Shell Nanostructures for Energy Storage and Conversion". Nanomaterials 13, nr 3 (1.02.2023): 589. http://dx.doi.org/10.3390/nano13030589.
Pełny tekst źródłaHarish, Vancha, Devesh Tewari, Manish Gaur, Awadh Bihari Yadav, Shiv Swaroop, Mikhael Bechelany i Ahmed Barhoum. "Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications". Nanomaterials 12, nr 3 (28.01.2022): 457. http://dx.doi.org/10.3390/nano12030457.
Pełny tekst źródłaSoleyman, R., A. Pourjavadi, N. Masoud i A. Varamesh. "Core–Shell γ-Fe2O3/SiO2/PCA/Ag-NPs Hybrid Nanomaterials as a New Candidate for Future Cancer Therapy". International Journal of Nanoscience 13, nr 01 (luty 2014): 1450008. http://dx.doi.org/10.1142/s0219581x14500082.
Pełny tekst źródłaPing, He Mei, Yuan Zhi Chen, De Qian Zeng, Rui Xu, Hui Zhang Guo, Lai Sen Wang i Dong Liang Peng. "Preparation of Gold-Nickel Phosphide Core-Shell Nanoparticles via a Facile Solution Method". Applied Mechanics and Materials 464 (listopad 2013): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.464.64.
Pełny tekst źródłaLi, Wei, Ahmed Elzatahry, Dhaifallah Aldhayan i Dongyuan Zhao. "Core–shell structured titanium dioxide nanomaterials for solar energy utilization". Chemical Society Reviews 47, nr 22 (2018): 8203–37. http://dx.doi.org/10.1039/c8cs00443a.
Pełny tekst źródłaGawande, Manoj B., Anandarup Goswami, Tewodros Asefa, Huizhang Guo, Ankush V. Biradar, Dong-Liang Peng, Radek Zboril i Rajender S. Varma. "Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis". Chemical Society Reviews 44, nr 21 (2015): 7540–90. http://dx.doi.org/10.1039/c5cs00343a.
Pełny tekst źródłaWang, Feifan, Yanjie Huang, Zhigang Chai, Min Zeng, Qi Li, Yuan Wang i Dongsheng Xu. "Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4microsphere@zeolitic imidazole framework-8". Chemical Science 7, nr 12 (2016): 6887–93. http://dx.doi.org/10.1039/c6sc03239g.
Pełny tekst źródłaVergnat, Virginie, Benoît Heinrich, Michel Rawiso, René Muller, Geneviève Pourroy i Patrick Masson. "Iron Oxide/Polymer Core–Shell Nanomaterials with Star-like Behavior". Nanomaterials 11, nr 9 (21.09.2021): 2453. http://dx.doi.org/10.3390/nano11092453.
Pełny tekst źródłaLiu, Hui, Yan Feng i Jun Yang. "Core-Shell Au-Pt Nanoparticles and Nanodendrites for Methanol Oxidation Reaction". Advanced Materials Research 1142 (styczeń 2017): 234–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1142.234.
Pełny tekst źródłaWu, Wenling, Liuqing Yang, Suli Chen, Yanming Shao, Lingyun Jing, Guanghui Zhao i Hua Wei. "Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors". RSC Advances 5, nr 111 (2015): 91645–53. http://dx.doi.org/10.1039/c5ra17036b.
Pełny tekst źródłaXia, Zhonghong, i Shaojun Guo. "Strain engineering of metal-based nanomaterials for energy electrocatalysis". Chemical Society Reviews 48, nr 12 (2019): 3265–78. http://dx.doi.org/10.1039/c8cs00846a.
Pełny tekst źródłaLiu, Yang, Shiqing Lu i Haidong Yang. "One-step coating of Ni–Fe alloy outerwear on 1–3-dimensional nanomaterials by a novel technology". New Journal of Chemistry 45, nr 14 (2021): 6406–14. http://dx.doi.org/10.1039/d0nj05292b.
Pełny tekst źródłaPeriasamy, Arun Prakash, Rini Ravindranath, Prathik Roy, Wen-Ping Wu, Huan-Tsung Chang, Pitchaimani Veerakumar i Shang-Bin Liu. "Carbon–boron core–shell microspheres for the oxygen reduction reaction". Journal of Materials Chemistry A 4, nr 33 (2016): 12987–94. http://dx.doi.org/10.1039/c6ta03684h.
Pełny tekst źródłaBa, Zhaojing, Yuansuo Zheng, Min Hu, Lei Fu, Yida He, Jing Wang i Zhenxi Zhang. "Tunable color emission based on the activator shell thickness of multilayer core–shell nanoparticles under double NIR excitation". CrystEngComm 21, nr 28 (2019): 4175–83. http://dx.doi.org/10.1039/c9ce00708c.
Pełny tekst źródłaSheng, Qinglin, Yu Shen, Jian Zhang i Jianbin Zheng. "Ni doped Ag@C core–shell nanomaterials and their application in electrochemical H2O2 sensing". Analytical Methods 9, nr 1 (2017): 163–69. http://dx.doi.org/10.1039/c6ay02196d.
Pełny tekst źródłaKim, Junhee, Sanghoon Jung, Han-Jung Kim, Yoonkap Kim, Chanyong Lee, Soo Min Kim, Donghwan Kim i Yongseok Jun. "SiNW/C@Pt Arrays for High-Efficiency Counter Electrodes in Dye-Sensitized Solar Cells". Energies 13, nr 1 (27.12.2019): 139. http://dx.doi.org/10.3390/en13010139.
Pełny tekst źródłaOkeil, Sherif, Sandeep Yadav, Michael Bruns, Alexander Zintler, Leopoldo Molina-Luna i Jörg J. Schneider. "Photothermal catalytic properties of layered titanium chalcogenide nanomaterials". Dalton Transactions 49, nr 4 (2020): 1032–47. http://dx.doi.org/10.1039/c9dt03798e.
Pełny tekst źródłaOu, Jun, Weihua Zheng, Zhiyin Xiao, Yuping Yan, Xiujuan Jiang, Yong Dou, Ran Jiang i Xiaoming Liu. "Core–shell materials bearing iron(ii) carbonyl units and their CO-release via an upconversion process". J. Mater. Chem. B 5, nr 41 (2017): 8161–68. http://dx.doi.org/10.1039/c7tb01434a.
Pełny tekst źródłaZhong, Yu, Fengming Wang, Chuangming Liang, Zeyi Guan, Bingshang Lu, Xin He i Weijia Yang. "ZnO@MoS2 Core–Shell Heterostructures Enabling Improved Photocatalytic Performance". Applied Sciences 12, nr 10 (15.05.2022): 4996. http://dx.doi.org/10.3390/app12104996.
Pełny tekst źródłaZhang, Bin, Xiaowei Zhao, Tianrui Dong, Aijuan Zhang, Xiao Zhang, Guang Han i Xiaoyuan Zhou. "Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu5FeS4 Nano-Icosahedrons: An in Situ Heating TEM Study". Nanomaterials 10, nr 1 (18.12.2019): 4. http://dx.doi.org/10.3390/nano10010004.
Pełny tekst źródłaZhang, Zhen, Xiao-Lian Zhang i Bin Li. "Mesoporous Silica-Coated Upconverting Nanorods for Singlet Oxygen Generation: Synthesis and Performance". Materials 14, nr 13 (30.06.2021): 3660. http://dx.doi.org/10.3390/ma14133660.
Pełny tekst źródłaKnežević, Nikola Ž., i Jean-Olivier Durand. "Large pore mesoporous silica nanomaterials for application in delivery of biomolecules". Nanoscale 7, nr 6 (2015): 2199–209. http://dx.doi.org/10.1039/c4nr06114d.
Pełny tekst źródłaDhawan, Udesh, Ching-Li Tseng, Huey-Yuan Wang, Shin-Yun Hsu, Meng-Tsan Tsai i Ren-Jei Chung. "Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma". Nanomaterials 11, nr 8 (11.08.2021): 2048. http://dx.doi.org/10.3390/nano11082048.
Pełny tekst źródłaKaur, Gagandeep, Swati Tanwar, Vishaldeep Kaur, Rathindranath Biswas, Sangeeta Saini, Krishna Kanta Haldar i Tapasi Sen. "Interfacial design of gold/silver core–shell nanostars for plasmon-enhanced photocatalytic coupling of 4-aminothiophenol". Journal of Materials Chemistry C 9, nr 42 (2021): 15284–94. http://dx.doi.org/10.1039/d1tc03733a.
Pełny tekst źródłaWang, Yixuan, Hao Liu, Min Wu, Kai Wang, Yongming Sui, Zhaodong Liu, Siyu Lu i in. "New-phase retention in colloidal core/shell nanocrystals via pressure-modulated phase engineering". Chemical Science 12, nr 19 (2021): 6580–87. http://dx.doi.org/10.1039/d1sc00498k.
Pełny tekst źródłaKhan, Shahid Ali, Sher Bahadar Khan i Abdullah M. Asiri. "Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution". New Journal of Chemistry 39, nr 7 (2015): 5561–69. http://dx.doi.org/10.1039/c5nj00521c.
Pełny tekst źródłaReaz, Mahmud, Ariful Haque i Kartik Ghosh. "Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO3–Iron Oxide Core–Shell Nanoparticles". Nanomaterials 10, nr 3 (20.03.2020): 563. http://dx.doi.org/10.3390/nano10030563.
Pełny tekst źródłaKhunrugsa, Chirayu, i Montree Sawangphruk. "Enhancing Cycling Stability of NMC811 Li-Ion Batteries By Encapsulating with Nanomaterials". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 302. http://dx.doi.org/10.1149/ma2022-012302mtgabs.
Pełny tekst źródłaZhang, Xiao Li, Young Hwan Kim i Young Soo Kang. "Synthesis and Properties of TiO2/ZnO Core/Shell Nanomaterials". Solid State Phenomena 119 (styczeń 2007): 239–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.119.239.
Pełny tekst źródłaLiu, Tong, Jingyi Fu, Dongxia Gou, Yanbo Hu, Qilong Tang, Jun Zhao i Xiaohong Li. "Chitosan-Derived Magnetic Nanomaterials: Synthesis, Characterization, and Nitrite Adsorption in Water". Journal of Nanomaterials 2021 (18.08.2021): 1–15. http://dx.doi.org/10.1155/2021/6420341.
Pełny tekst źródłaLee, Jong-tak, i Jae-Young Bae. "Synthesis and Characteristics of Double-Shell Mesoporous Hollow Silica Nanomaterials to Improve CO2 Adsorption Performance". Micromachines 12, nr 11 (19.11.2021): 1424. http://dx.doi.org/10.3390/mi12111424.
Pełny tekst źródła