Artykuły w czasopismach na temat „Core-shell Heterostructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Core-shell Heterostructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gopalan, Srikanth, i Benjamin Levitas. "Heterostructured Functional Materials through Molten Salt Synthesis for Solid Oxide Fuel Cells and Electrolysis Cells". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1679. http://dx.doi.org/10.1149/ma2022-01381679mtgabs.
Pełny tekst źródłaBu, Wenbo, i Jianlin Shi. "Characterization of Highly Luminescent LaPO4:Eu3+/LaPO4 One-Dimensional Core/Shell Heterostructures". Journal of Nanoscience and Nanotechnology 8, nr 3 (1.03.2008): 1266–71. http://dx.doi.org/10.1166/jnn.2008.18181.
Pełny tekst źródłaÜnlü, Hilmi. "A thermoelastic model for strain effects on bandgaps and band offsets in heterostructure core/shell quantum dots". European Physical Journal Applied Physics 86, nr 3 (czerwiec 2019): 30401. http://dx.doi.org/10.1051/epjap/2019180350.
Pełny tekst źródłaChopra, Nitin, Yuan Li i Kuldeep Kumar. "Cobalt oxide-tungsten oxide nanowire heterostructures: Fabrication and characterization". MRS Proceedings 1675 (2014): 191–96. http://dx.doi.org/10.1557/opl.2014.863.
Pełny tekst źródłaWang, Xuejing, Yung-Chen Lin, Chia-Tse Tai, Seok Woo Lee, Tzu-Ming Lu, Sun Hae Ra Shin, Sadhvikas J. Addamane i in. "Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure". APL Materials 10, nr 11 (1.11.2022): 111108. http://dx.doi.org/10.1063/5.0119654.
Pełny tekst źródłaHan, Delong, Wenlei Tang, Naizhang Sun, Han Ye, Hongyu Chai i Mingchao Wang. "Shape and Composition Evolution in an Alloy Core–Shell Nanowire Heterostructure Induced by Adatom Diffusion". Nanomaterials 13, nr 11 (25.05.2023): 1732. http://dx.doi.org/10.3390/nano13111732.
Pełny tekst źródłaMeier, Johanna, i Gerd Bacher. "Progress and Challenges of InGaN/GaN-Based Core–Shell Microrod LEDs". Materials 15, nr 5 (22.02.2022): 1626. http://dx.doi.org/10.3390/ma15051626.
Pełny tekst źródłaBabu, Bathula, Shaik Gouse Peera i Kisoo Yoo. "Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance". Inorganics 11, nr 5 (15.05.2023): 213. http://dx.doi.org/10.3390/inorganics11050213.
Pełny tekst źródłaLv, Yuepeng, Sibin Duan, Yuchen Zhu, Peng Yin i Rongming Wang. "Enhanced OER Performances of Au@NiCo2S4 Core-Shell Heterostructure". Nanomaterials 10, nr 4 (27.03.2020): 611. http://dx.doi.org/10.3390/nano10040611.
Pełny tekst źródłaChen, Shaohua, Xiaoli Zhao, Fazhi Xie, Zhi Tang i Xiufang Wang. "Efficient charge separation between ZnIn2S4 nanoparticles and polyaniline nanorods for nitrogen photofixation". New Journal of Chemistry 44, nr 18 (2020): 7350–56. http://dx.doi.org/10.1039/d0nj01102a.
Pełny tekst źródłaCornet, D. M., i R. R. LaPierre. "InGaAs/InP core–shell and axial heterostructure nanowires". Nanotechnology 18, nr 38 (31.08.2007): 385305. http://dx.doi.org/10.1088/0957-4484/18/38/385305.
Pełny tekst źródłaWang, Yameng, Yan Zhang, Cheng Du, Jian Chen, Zhengfang Tian, Mingjiang Xie i Liu Wan. "Rational synthesis of CoFeP@nickel–manganese sulfide core–shell nanoarrays for hybrid supercapacitors". Dalton Transactions 50, nr 46 (2021): 17181–93. http://dx.doi.org/10.1039/d1dt03196a.
Pełny tekst źródłaXie, Zhiqiang, Sarah Ellis, Wangwang Xu, Dara Dye, Jianqing Zhao i Ying Wang. "A novel preparation of core–shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries". Chemical Communications 51, nr 81 (2015): 15000–15003. http://dx.doi.org/10.1039/c5cc05577f.
Pełny tekst źródłaAnandan, Deepak, Che-Wei Hsu i Edward Yi Chang. "Growth of III-V Antimonide Heterostructure Nanowires on Silicon Substrate for Esaki Tunnel Diode". Materials Science Forum 1055 (4.03.2022): 1–6. http://dx.doi.org/10.4028/p-y19917.
Pełny tekst źródłaZhao, Jun, Gencai Pan, Wen Xu, Suyue Jin, Huafang Zhang, Huiping Gao, Miao Kang i Yanli Mao. "Strong upconverting and downshifting emission of Mn2+ ions in a Yb,Tm:NaYF4@NaLuF4/Mn:CsPbCl3 core/shell heterostructure towards dual-model anti-counterfeiting". Chemical Communications 56, nr 93 (2020): 14609–12. http://dx.doi.org/10.1039/d0cc05663d.
Pełny tekst źródłaLe, Anh Thi, Minh Tan Man i Minh Hoa Nguyen. "Effect of shell thickness on heterostructure of CdSe/CdS core/shell nanocrystals". Hue University Journal of Science: Natural Science 131, nr 1B (30.06.2022): 5–10. http://dx.doi.org/10.26459/hueunijns.v131i1b.6491.
Pełny tekst źródłaXie, Yangcun, Xiuwen Wang i Xu Wen. "Controllable Preparation of Silver Orthophosphate@Carbon Layer Core/Shell Heterostructure with Enhanced Visible Photocatalytic Properties and Stability". Nano 10, nr 02 (luty 2015): 1550022. http://dx.doi.org/10.1142/s1793292015500228.
Pełny tekst źródłaHong, Xiao Jie, Xian Fan, Zhao Yang Wu, Guo Qiang Wang, Cheng Yi Zhu, Guang Qiang Li i Yan Hui Hou. "Preparation and Microstructure Control of One-Dimension Core-Shell Heterostructure of Te/Bi, Te/Bi2Te3 by Microwave Assisted Chemical Synthesis". Materials Science Forum 743-744 (styczeń 2013): 153–60. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.153.
Pełny tekst źródłaWang, Hui, Wei Zhao, Cong-Hui Xu, Hong-Yuan Chen i Jing-Juan Xu. "Electrochemical synthesis of Au@semiconductor core–shell nanocrystals guided by single particle plasmonic imaging". Chemical Science 10, nr 40 (2019): 9308–14. http://dx.doi.org/10.1039/c9sc02804h.
Pełny tekst źródłaMajumder, Sutripto, i Babasaheb R. Sankapal. "Facile fabrication of CdS/CdSe core–shell nanowire heterostructure for solar cell applications". New Journal of Chemistry 41, nr 13 (2017): 5808–17. http://dx.doi.org/10.1039/c7nj00954b.
Pełny tekst źródłaZhang, Shuaihua, Qian Yang, Xingtao Xu, Xiaohong Liu, Qian Li, Jingru Guo, Nagy L. Torad i in. "Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing". Nanoscale 12, nr 29 (2020): 15611–19. http://dx.doi.org/10.1039/d0nr03041d.
Pełny tekst źródłaSibirev N V, Berdnikov Y, Shtrom I. V., Ubyivovk E. V., Reznik R. R. i Cirlin G. E. "Kinetics of spontaneous formation of core shell structure in (In,Ga)As nanowires". Technical Physics Letters 48, nr 2 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.02.52841.18869.
Pełny tekst źródłaKim, Gi-Yeop, Kil-Dong Sung, Youngmok Rhyim, Seog-Young Yoon, Min-Soo Kim, Soon-Jong Jeong, Kwang-Ho Kim, Jungho Ryu, Sung-Dae Kim i Si-Young Choi. "Enhanced polarization by the coherent heterophase interface between polar and non-polar phases". Nanoscale 8, nr 14 (2016): 7443–48. http://dx.doi.org/10.1039/c5nr05391a.
Pełny tekst źródłaZhou, Zehao, Jian Zhao, Zhenghan Di, Bei Liu, Zhaohui Li, Xuemin Wu i Lele Li. "Core–shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy". Nanoscale 13, nr 1 (2021): 131–37. http://dx.doi.org/10.1039/d0nr07681c.
Pełny tekst źródłaZhou, Min, Qunhong Weng, Xiuyun Zhang, Xi Wang, Yanming Xue, Xianghua Zeng, Yoshio Bando i Dmitri Golberg. "In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms". Journal of Materials Chemistry A 5, nr 9 (2017): 4335–42. http://dx.doi.org/10.1039/c6ta09366c.
Pełny tekst źródłaHwang, Yunjeong, i Naechul Shin. "Colloidal Synthesis of MoSe2/WSe2 Heterostructure Nanoflowers via Two-Step Growth". Materials 14, nr 23 (29.11.2021): 7294. http://dx.doi.org/10.3390/ma14237294.
Pełny tekst źródłaKim, Dongheun, Nan Li, Chris J. Sheehan i Jinkyoung Yoo. "Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g−1". Nanoscale 10, nr 16 (2018): 7343–51. http://dx.doi.org/10.1039/c8nr00865e.
Pełny tekst źródłaLiu, Jingjing, Wenyao Li, Zhe Cui, Jiaojiao Li, Fang Yang, Liping Huang, Caiyu Ma i Min Zeng. "CoMn phosphide encapsulated in nitrogen-doped graphene for electrocatalytic hydrogen evolution over a broad pH range". Chemical Communications 57, nr 19 (2021): 2400–2403. http://dx.doi.org/10.1039/d0cc07523j.
Pełny tekst źródłaQian, Jing, Xingwang Yang, Zhenting Yang, Gangbing Zhu, Hanping Mao i Kun Wang. "Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing". Journal of Materials Chemistry B 3, nr 8 (2015): 1624–32. http://dx.doi.org/10.1039/c4tb01702a.
Pełny tekst źródłaGrenier, Vincent, Sylvain Finot, Lucie Valera, Joël Eymery, Gwénolé Jacopin i Christophe Durand. "UV-A to UV-B electroluminescence of core-shell GaN/AlGaN wire heterostructures". Applied Physics Letters 121, nr 13 (26.09.2022): 131102. http://dx.doi.org/10.1063/5.0101591.
Pełny tekst źródłaHan, Chuang, Shao-Hai Li, Zi-Rong Tang i Yi-Jun Xu. "Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis". Chemical Science 9, nr 48 (2018): 8914–22. http://dx.doi.org/10.1039/c8sc04479a.
Pełny tekst źródłaSadowski, T., i R. Ramprasad. "Core/Shell CdSe/CdTe Heterostructure Nanowires Under Axial Strain". Journal of Physical Chemistry C 114, nr 4 (7.01.2010): 1773–81. http://dx.doi.org/10.1021/jp907150d.
Pełny tekst źródłaZhang, Genqiang, Wei Wang i Xiaoguang Li. "Enhanced Thermoelectric Properties of Core/Shell Heterostructure Nanowire Composites". Advanced Materials 20, nr 19 (2.10.2008): 3654–56. http://dx.doi.org/10.1002/adma.200800162.
Pełny tekst źródłaRad, Maryam, i Saeed Dehghanpour. "ZnO as an efficient nucleating agent and morphology template for rapid, facile and scalable synthesis of MOF-46 and ZnO@MOF-46 with selective sensing properties and enhanced photocatalytic ability". RSC Advances 6, nr 66 (2016): 61784–93. http://dx.doi.org/10.1039/c6ra12410k.
Pełny tekst źródłaWu, Chun, Junjie Cai, Ying Zhu i Kaili Zhang. "Nanoforest of hierarchical core/shell CuO@NiCo2O4 nanowire heterostructure arrays on nickel foam for high-performance supercapacitors". RSC Advances 6, nr 68 (2016): 63905–14. http://dx.doi.org/10.1039/c6ra10033c.
Pełny tekst źródłaWu, Guoguang, Weitao Zheng, Fubin Gao, Hang Yang, Yang Zhao, Jingzhi Yin, Wei Zheng, Wancheng Li, Baolin Zhang i Guotong Du. "Near infrared electroluminescence of ZnMgO/InN core–shell nanorod heterostructures grown on Si substrate". Physical Chemistry Chemical Physics 18, nr 30 (2016): 20812–18. http://dx.doi.org/10.1039/c6cp03199d.
Pełny tekst źródłaBasu, Kaustubh, Hui Zhang, Haiguang Zhao, Sayantan Bhattacharya, Fabiola Navarro-Pardo, Prasanta Kumar Datta, Lei Jin, Shuhui Sun, Fiorenzo Vetrone i Federico Rosei. "Highly stable photoelectrochemical cells for hydrogen production using a SnO2–TiO2/quantum dot heterostructured photoanode". Nanoscale 10, nr 32 (2018): 15273–84. http://dx.doi.org/10.1039/c8nr02286k.
Pełny tekst źródłaGang, Chuan, Jiayi Chen, Xu Li, Bo Ma, Xudong Zhao i Yantao Chen. "Cu3P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution". Nanoscale 13, nr 46 (2021): 19430–37. http://dx.doi.org/10.1039/d1nr06125a.
Pełny tekst źródłaDai, Guozhang, Yang Xiang, Xindi Mo, Zhixing Xiao, Hua Yuan, Jiaxing Wan, Biao Liu i Junliang Yang. "High-performance CdS@CsPbBr3 core–shell microwire heterostructure photodetector". Journal of Physics D: Applied Physics 55, nr 19 (16.02.2022): 194002. http://dx.doi.org/10.1088/1361-6463/ac520b.
Pełny tekst źródłaKao, Yuan-Tse, Shu-Meng Yang i Kuo-Chang Lu. "Synthesis and Photocatalytic Properties of CuO-CuS Core-Shell Nanowires". Materials 12, nr 7 (3.04.2019): 1106. http://dx.doi.org/10.3390/ma12071106.
Pełny tekst źródłaWang, Lu, Junhua You, Yao Zhao i Wanting Bao. "Core–shell CuO@NiCoMn-LDH supported by copper foam for high-performance supercapacitors". Dalton Transactions 51, nr 8 (2022): 3314–22. http://dx.doi.org/10.1039/d1dt04002b.
Pełny tekst źródłaGreenberg, Ya’akov, Alexander Kelrich, Shimon Cohen, Sohini Kar-Narayan, Dan Ritter i Yonatan Calahorra. "Strain-Mediated Bending of InP Nanowires through the Growth of an Asymmetric InAs Shell". Nanomaterials 9, nr 9 (16.09.2019): 1327. http://dx.doi.org/10.3390/nano9091327.
Pełny tekst źródłaZhang, Hong-Yu, Yan Yang, Chang-Cheng Li, Hong-Liang Tang, Feng-Ming Zhang, Gui-Ling Zhang i Hong Yan. "A new strategy for constructing covalently connected MOF@COF core–shell heterostructures for enhanced photocatalytic hydrogen evolution". Journal of Materials Chemistry A 9, nr 31 (2021): 16743–50. http://dx.doi.org/10.1039/d1ta04493a.
Pełny tekst źródłaPelicano, Christian Mark, Itaru Raifuku, Yasuaki Ishikawa, Yukiharu Uraoka i Hisao Yanagi. "Hierarchical core–shell heterostructure of H2O-oxidized ZnO nanorod@Mg-doped ZnO nanoparticle for solar cell applications". Materials Advances 1, nr 5 (2020): 1253–61. http://dx.doi.org/10.1039/d0ma00313a.
Pełny tekst źródłaLiang, Miaomiao, Mingshu Zhao, Haiyang Wang, Qingyang Zheng i Xiaoping Song. "Superior cycling stability of a crystalline/amorphous Co3S4 core–shell heterostructure for aqueous hybrid supercapacitors". Journal of Materials Chemistry A 6, nr 43 (2018): 21350–59. http://dx.doi.org/10.1039/c8ta08135b.
Pełny tekst źródłaChen, Fei, Ting Wang, Lei Wang, Xiaohong Ji i Qinyuan Zhang. "Improved light emission of MoS2 monolayers by constructing AlN/MoS2 core–shell nanowires". J. Mater. Chem. C 5, nr 39 (2017): 10225–30. http://dx.doi.org/10.1039/c7tc03231e.
Pełny tekst źródłaWu, Di, Jun Guo, Zhen-Hua Ge i Jing Feng. "Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity". Nanomaterials 11, nr 12 (14.12.2021): 3390. http://dx.doi.org/10.3390/nano11123390.
Pełny tekst źródłaIshiwata, Takumi, Ayano Michibata, Kenta Kokado, Sylvie Ferlay, Mir Wais Hosseini i Kazuki Sada. "Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking". Chemical Communications 54, nr 12 (2018): 1437–40. http://dx.doi.org/10.1039/c7cc07158b.
Pełny tekst źródłaYang, Chunming, Guimei Gao, Junjun Zhang, Ruiping Liu, Ruicheng Fan, Ming Zhao, Yongwang Wang i Shucai Gan. "Surface oxygen vacancy induced solar light activity enhancement of a CdWO4/Bi2O2CO3 core–shell heterostructure photocatalyst". Physical Chemistry Chemical Physics 19, nr 22 (2017): 14431–41. http://dx.doi.org/10.1039/c7cp02136d.
Pełny tekst źródłaKrystofiak, Evan S., Eric C. Mattson, Paul M. Voyles, Carol J. Hirschmugl, Ralph M. Albrecht, Marija Gajdardziska-Josifovska i Julie A. Oliver. "Multiple Morphologies of Gold–Magnetite Heterostructure Nanoparticles are Effectively Functionalized with Protein for Cell Targeting". Microscopy and Microanalysis 19, nr 4 (7.06.2013): 821–34. http://dx.doi.org/10.1017/s1431927613001700.
Pełny tekst źródła