Gotowa bibliografia na temat „Copper zine tin sulfide”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Copper zine tin sulfide”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Copper zine tin sulfide"
Jiang, Mei Guang, Quan Jun Liu, Hong Xiao i Jun Long Yang. "Experiment Research on Copper Zinc Mixed Flotation". Advanced Materials Research 634-638 (styczeń 2013): 3346–50. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.3346.
Pełny tekst źródłaJohnson, M., S. V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. V. Veryovkin, C. Leighton i E. S. Aydil. "Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films". Energy Environ. Sci. 7, nr 6 (2014): 1931–38. http://dx.doi.org/10.1039/c3ee44130j.
Pełny tekst źródłaVermang, Bart, Aniket Mule, Nikhil Gampa, Sylvester Sahayaraj, Samaneh Ranjbar, Guy Brammertz, Marc Meuris i Jef Poortmans. "Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells". Solid State Phenomena 255 (wrzesień 2016): 348–53. http://dx.doi.org/10.4028/www.scientific.net/ssp.255.348.
Pełny tekst źródłaChernomordik, B. D., A. E. Béland, N. D. Trejo, A. A. Gunawan, D. D. Deng, K. A. Mkhoyan i E. S. Aydil. "Rapid facile synthesis of Cu2ZnSnS4 nanocrystals". J. Mater. Chem. A 2, nr 27 (2014): 10389–95. http://dx.doi.org/10.1039/c4ta01658k.
Pełny tekst źródłaRudnik, Ewa, Iwona Dobosz, Krzysztof Fitzner i Zbigniew Miazga. "Hydrometallurgical Treatment of Smelted Low-Grade WEEE in Ammoniacal Solutions". Key Engineering Materials 682 (luty 2016): 293–98. http://dx.doi.org/10.4028/www.scientific.net/kem.682.293.
Pełny tekst źródłaFischereder, Achim, Alexander Schenk, Thomas Rath, Wernfried Haas, Sébastien Delbos, Corentin Gougaud, Negar Naghavi i in. "Solution-processed copper zinc tin sulfide thin films from metal xanthate precursors". Monatshefte für Chemie - Chemical Monthly 144, nr 3 (9.01.2013): 273–83. http://dx.doi.org/10.1007/s00706-012-0882-6.
Pełny tekst źródłaÖzdal, Teoman, i Hamide Kavak. "Comprehensive analysis of spin coated copper zinc tin sulfide thin film absorbers". Journal of Alloys and Compounds 725 (listopad 2017): 644–51. http://dx.doi.org/10.1016/j.jallcom.2017.07.209.
Pełny tekst źródłaGunavathy, K. V., K. Tamilarasan, C. Rangasami i A. M. S. Arulanantham. "Solution processed copper zinc tin sulfide thin films for thermoelectric device applications". Ceramics International 46, nr 18 (grudzień 2020): 28342–54. http://dx.doi.org/10.1016/j.ceramint.2020.07.338.
Pełny tekst źródłaFuhrmann, Daniel, Stefan Dietrich i Harald Krautscheid. "Copper Zinc Thiolate Complexes as Potential Molecular Precursors for Copper Zinc Tin Sulfide (CZTS)". Chemistry - A European Journal 23, nr 14 (27.01.2017): 3338–46. http://dx.doi.org/10.1002/chem.201604717.
Pełny tekst źródłaSravani, Lingam, Soumyaranjan Routray, Kumar Prasannajit Pradhan i Maykel Courel Piedrahita. "Kesterite Thin‐Film Solar Cell: Role of Grain Boundaries and Defects in Copper–Zinc–Tin–Sulfide and Copper–Zinc–Tin–Selenide". physica status solidi (a) 218, nr 16 (17.07.2021): 2100039. http://dx.doi.org/10.1002/pssa.202100039.
Pełny tekst źródłaRozprawy doktorskie na temat "Copper zine tin sulfide"
Monahan, Bradley Michael. "Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1404732007.
Pełny tekst źródłaYu, Yue. "Thin Film Solar Cells with Earth Abundant Elements: from Copper Zinc Tin Sulfide to Organic-Inorganic Hybrid Halide Perovskite". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513289830601094.
Pełny tekst źródłaTsai, Wei Tao, i 蔡維道. "The Study of Copper-Zinc-Tin-Sulfide Thin Film Prepared by Evaporation and Sulfurisation". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/17815306951236066473.
Pełny tekst źródłaHo, Shao-Chan, i 何韶展. "Preparation and Properties of Copper and Zinc Tin Sulfide Photovoltaic Components Absorbing Layer by Magnetron Co-sputterin". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/ujgtsf.
Pełny tekst źródła國立虎尾科技大學
材料科學與綠色能源工程研究所在職專班
100
This study is to prepare a thin film of Cu – Zn - Sn - S ( CZTS ) in Corning Eagle2000 glass substrate.By using magnetron sputtering and sulfidization method,The effects of different process parameters such as substrate temperature and annealing temperature on the characteristics of Cu2ZnSnS4 thin films were explored. Mo electrode film was firstly DC sputtered as an absorbing layer ohmic contact , then the Cu-Zn-Sn layer was prepared using copper , zinc and tin targets and thus the sulfuration process was used to prepared resultant CZTS film. This process could reduce costs and increase the feasibility of the preparation of large area thin film. From the results of XRD and Raman scattering, the copper-zinc-tin films can convert to the CZTS Kesterite structure. The crystal structure of CuZn and Sn of the sputtered thin film can be obviously improved by elevating substrate temperature, and the crystallinity of the film can also be enhanced. The optimum processing is to deposit CZT film on an unheated substrate under an Ar flow of 20 sccm, and there after annealing at 550 ℃in vacuum for 35 minutes, The crystal structure the CZTS film can be obtained. The carrier concentration of the film is 2.37×1019cm-3,carrier mobility is 8.22 cm2V-1s-1,and the energy gap is about 1.5 eV. The surface roughness of CZTS thin film is 3μm.
Wang, Yan-Jhih, i 王彥智. "Copper Znic Tin Sulfide thin film solar cell". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/23654871347289120453.
Pełny tekst źródła國立臺灣科技大學
化學工程系
103
The copper zinc tin sulfide (Cu2ZnSnS4, CZTS) has been regarded as solar energy absorber material due to its suitable band gap (~1.5 eV), large absorption coefficient (>10cm), low toxicity and constructed by abundant elements on earth. For the choice of photoelectrode,zinc oxide nanorods array (ZnO NRA) owns one-dimensional characteristics, which has high electron mobility (200 cm/V•s at T=300K) and high light scattering for light harvesting. In addition, ZnO NRA can effectively transport electrons toward the collection electrode to increase the separation of electrons and holes. In this study, hydrothermal process was employed to grow one-dimensional ZnO NRA as photoelectrode of the solar cell. CZTS nanomaterials were coated on the surfaces of ZnO NRA as light harvesting materials for the inversed thin film solar cells. In the study, the lengths of ZnO NRA and spin coating speeds were used as parameters to find the optimal conditions for this type thin film solar cells. Firstly, the optimal amount of CZTS precursor solution around 1.0 mL for ZnO NRA with 350 nm, the power conversion efficiency (PEC) could improve from 0.039 % to 0.445 %. In the next, studing the influence of the length of ZnO NRA on the performance of solar cells. When CZTS light harvesting materials covered uniformly on the surfaces of ZnO NRAs from top to bottom, the short-circuit current density (Jsc) can improve from 2.20 mAcm-2 to 3.38 mAcm-2 and PCE can be enhanced to 0.991 %. In addition, we also observed that although increasing the length of ZnO NRA could effectively increase the pn junction area to improve the Jsc of 3.67 mAcm-2; however, the PCE would decrease to 0.635% if the amount of CZTS precursor solution was too less to form an optimal thickness of overlayer on the top of ZnO NRA.
Hsu, Chin, i 許靖. "One-step Synthesis of Copper Tin Sulfide Photocathodes for Photoelectrochemical Hydrogen Generation". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/e688a5.
Pełny tekst źródła國立中山大學
材料與光電科學學系研究所
106
Copper tin sulfide (CTS) is one of promising photocathode materials for photoelectrochemical (PEC) water splitting, because it has a suitable band structure and large absorption coefficient (over 104 cm-1). In this work, CTS was grown onto fluorine doped tin oxide (FTO) glass by a solvothermal method without annealing. According to scanning electron microscope (SEM) and transmission electron microscope (TEM), CTS particle size is around 800 to 1000 nm and consist of nanocrystal and amorphous phase. X-ray photoelectron spectroscopy (XPS) show the elemental valences are Cu+、Sn4+ and S2-. Combined with X-ray diffraction (XRD)、Raman spectroscopy and energy dispersive spectroscopy (EDS) both Cu2SnS3 and Cu4SnS4 exist in material. The band gap is 1.38 eV measured by UV-Vis spectrometer, and band structure was defined by ultraviolet photoelectron spectroscopy (UPS) . The onset potential of CTS is 0.15 V ( vs reversible hydrogen electrode, VRHE) and the photocurrent is 0.105 mA/cm2 at the theoretical hydrogen production potential (0 VRHE). After using Titanium dioxide and nickel as buffer layer and catalyst, onset potential is still at 0.2 VRHE and the photocurrent increase to 0.354 mA/cm2, which is three times higher than bare CTS.
Książki na temat "Copper zine tin sulfide"
Scragg, Jonathan J. Copper Zinc Tin Sulfide Thin Films for Photovoltaics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0.
Pełny tekst źródłaIto, Kentaro, red. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. Chichester, UK: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118437865.
Pełny tekst źródłaScragg, Jonathan J. Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaCopper Zinc Tin Sulfide-Based Thin-Film Solar Cells. Wiley, 2015.
Znajdź pełny tekst źródłaIto, Kentaro. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaIto, Kentaro. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaIto, Kentaro. Copper Zinc Tin Sulfide-Based Thin Film Solar Cells. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaScragg, Jonathan J. Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods. Springer, 2013.
Znajdź pełny tekst źródłaScragg, Jonathan J. Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods. Springer, 2011.
Znajdź pełny tekst źródłaRobb, Laurence, i Andrew Mitchell. Mineral Deposits of Myanmar (Burma). Society of Economic Geologists, 2021. http://dx.doi.org/10.5382/gb.62.
Pełny tekst źródłaCzęści książek na temat "Copper zine tin sulfide"
Scragg, Jonathan J. "Introduction". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_1.
Pełny tekst źródłaScragg, Jonathan J. "Electrodeposition of Metallic Precursors". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 9–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_2.
Pełny tekst źródłaScragg, Jonathan J. "Conversion of Precursors into Compound Semiconductors". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 59–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_3.
Pełny tekst źródłaScragg, Jonathan J. "The Influences of Sulfurisation Variables and Precursor Composition on the Development of the CZTS Phase". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 111–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_4.
Pełny tekst źródłaScragg, Jonathan J. "Opto-Electronic Properties of Cu2ZnSnS4 Films: Influences of Growth Conditions and Precursor Composition". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 155–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_5.
Pełny tekst źródłaScragg, Jonathan J. "Conclusions and Recommendations for Further Studies". W Copper Zinc Tin Sulfide Thin Films for Photovoltaics, 197–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22919-0_6.
Pełny tekst źródłaIto, Kentaro. "An Overview of CZTS-Based Thin-Film Solar Cells". W Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, 1–41. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118437865.ch1.
Pełny tekst źródłaUnold, Thomas, Justus Just i Hans-Werner Schock. "Coevaporation of CZTS Films and Solar Cells". W Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, 221–38. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118437865.ch10.
Pełny tekst źródłaHages, Charles J., i Rakesh Agrawal. "Synthesis of CZTSSe Thin Films from Nanocrystal Inks". W Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, 239–70. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118437865.ch11.
Pełny tekst źródłaTanaka, Kunihiko. "CZTS Thin Films Prepared by a Non-Vacuum Process". W Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, 271–87. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118437865.ch12.
Pełny tekst źródłaStreszczenia konferencji na temat "Copper zine tin sulfide"
Zhu, Lei, Yinghuai Qiang, Xiuquan Gu i Yulong Zhao. "Copper Zinc Tin Sulfide Selenium Counter Electrodes for Dye-Sensitized Solar Cells". W Nanophotonics, Nanoelectronics and Nanosensor. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa3a.33.
Pełny tekst źródłaAli, Nisar, Muhammad Ilyas, Shabeer Muhammad, Amir Khesro, Maria Karim i Abdur Rauf. "The use of copper zinc tin sulfide compound thin film as an absorber layer in solar cell". W 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). IEEE, 2021. http://dx.doi.org/10.1109/ibcast51254.2021.9393259.
Pełny tekst źródłaBras, Patrice, Leo Mauvy, Jan Sterner i Charlotte Platzer-Bjorkman. "Uniformity assessment of a 6-inch copper-zinc-tin-sulfide solar cell sputtered from a quaternary compound target". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356103.
Pełny tekst źródłaWelatta, F., A. El Kissani, M. Aggour i A. Outzourhit. "Fabrication and characterization of copper-tin-sulfide thin film". W 1ST INTERNATIONAL CONGRESS ON SOLAR ENERGY RESEARCH, TECHNOLOGY AND APPLICATIONS (ICSERTA 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5084984.
Pełny tekst źródłaJubimol, J., M. S. Sreejith, C. Sudha Kartha, K. P. Vijayakumar i Godfrey Louis. "Photoluminescence studies on copper zinc sulfide thin films synthesized through chemical bath deposition". W THE 3RD INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND NANO MATERIALS FOR ADVANCED TECHNOLOGY (icONMAT 2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5093865.
Pełny tekst źródłaMorgan, Charles L. "The Status of Marine Mining Worldwide". W ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80048.
Pełny tekst źródłaVittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal i Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell". W ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.
Pełny tekst źródłaJung, Gyeong Bok, Yoon Myung, Jeunghee Park, Inhee Maeng i Joo-Hiuk Son. "Terahertz spectroscopy of platinum, copper sulfide, and tin oxide nanocrystals-carbon nanotube hybrid nanostructures". W 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IORMMW-THz 2009). IEEE, 2009. http://dx.doi.org/10.1109/icimw.2009.5325644.
Pełny tekst źródłaLehmann, S., M. L. Bauersfeld i J. Wöllenstein. "GS4.2 - A copper(II) oxide – tin dioxide heterojunction sensor for the detection of hydrogen sulfide". W 17th International Meeting on Chemical Sensors - IMCS 2018. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2018. http://dx.doi.org/10.5162/imcs2018/gs4.2.
Pełny tekst źródłaSHOHAG, MD ABU, i MINH HOANG NHAT NGUYEN. "FLEXIBLE STRETCHABLE MECHANOLUMINESCENT- PEROVSKITE SENSOR FOR STRUCTURAL HEALTH MONITORING". W Structural Health Monitoring 2021. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/shm2021/36267.
Pełny tekst źródła