Gotowa bibliografia na temat „Copolymars composites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Copolymars composites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Copolymars composites"
Nandekar, Kamlakar. "Novel Applications of Some Organic Copolymers Derived From Phenolic and Nitrogen-Containing Compounds- A Review". Journal of ISAS 2, nr 1 (31.07.2023): 15–26. http://dx.doi.org/10.59143/isas.jisas.2.1.kdqi5413.
Pełny tekst źródłaChon, Yang, Lee, Kim, Jeon, Jho i Chung. "Novel PEEK Copolymer Synthesis and Biosafety – I: Cytotoxicity Evaluation for Clinical Application". Polymers 11, nr 11 (2.11.2019): 1803. http://dx.doi.org/10.3390/polym11111803.
Pełny tekst źródłaBARIM, Esra. "Synthesis, Characterization, Optical and Thermal Properties of P(NVC-co-BZMA) Copolymer and Its ZnO Composites". Gazi University Journal of Science Part A: Engineering and Innovation 9, nr 4 (31.12.2022): 526–36. http://dx.doi.org/10.54287/gujsa.1199767.
Pełny tekst źródłaTzoumani, Ioanna, Zacharoula Iatridi, Athena M. Fidelli, Poppy Krassa, Joannis K. Kallitsis i Georgios Bokias. "Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-Hydroxyethyl Methacrylate-Based Polymers". International Journal of Molecular Sciences 24, nr 3 (29.01.2023): 2575. http://dx.doi.org/10.3390/ijms24032575.
Pełny tekst źródłaPrasomsin, Wassika, Tewarak Parnklang, Chaweewan Sapcharoenkun, Sunan Tiptipakorn i Sarawut Rimdusit. "Multiwalled Carbon Nanotube Reinforced Bio-Based Benzoxazine/Epoxy Composites with NIR-Laser Stimulated Shape Memory Effects". Nanomaterials 9, nr 6 (14.06.2019): 881. http://dx.doi.org/10.3390/nano9060881.
Pełny tekst źródłaTzoumani, Ioanna, Amaia Soto Beobide, Zacharoula Iatridi, George A. Voyiatzis, Georgios Bokias i Joannis K. Kallitsis. "Glycidyl Methacrylate-Based Copolymers as Healing Agents of Waterborne Polyurethanes". International Journal of Molecular Sciences 23, nr 15 (23.07.2022): 8118. http://dx.doi.org/10.3390/ijms23158118.
Pełny tekst źródłaO'Donnell, Justin N. R., i Drago Skrtic. "Degree of Vinyl Conversion, Polymerization Shrinkage and Stress Development in Experimental Endodontic Composite". Journal of Biomimetics, Biomaterials and Tissue Engineering 4 (grudzień 2009): 1–12. http://dx.doi.org/10.4028/www.scientific.net/jbbte.4.1.
Pełny tekst źródłaDesbrieres, Jacques, Stephanie Reynaud, Pierre Marcasuzaa i Francis Ehrenfeld. "Actuator-Like Hydrogels Based on Conductive Chitosan". Advances in Science and Technology 84 (wrzesień 2012): 29–38. http://dx.doi.org/10.4028/www.scientific.net/ast.84.29.
Pełny tekst źródłaLiu, Fei, Shan Lu, Weihong Cao, Juncheng Huang, Yi Sun, Yiting Xu, Meiling Chen, Haining Na i Jin Zhu. "Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility". Polymers 14, nr 17 (24.08.2022): 3449. http://dx.doi.org/10.3390/polym14173449.
Pełny tekst źródłaPiggott, M. R., i W. (Vincent) Zhou. "Shrinkage Control in Fibre Reinforced Polymers III: Carbon Fibre Reinforced Polyesters with Expanding Monomers and Low Profile Additives". Engineering Plastics 3, nr 6 (styczeń 1995): 147823919500300. http://dx.doi.org/10.1177/147823919500300601.
Pełny tekst źródłaRozprawy doktorskie na temat "Copolymars composites"
Granat, Cécile. "Étude des mécanismes d’auto-adhésion entre élastomère et matériau composite : Impact des paramètres de formulation et de mise en oeuvre des élastomères et du composite sur les caractéristiques de l’assemblage". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0054.
Pełny tekst źródłaIn many fields, in particular in aeronautic and aerospace, assemblies by bonding instead of bolting are used in order to lighten structures involving composite materials. Furthermore chemical bonding minimizes the risk of damage by fibers breaking. In this context, our research work concerns the assembly between a cured elastomer, known to be difficult to be bonded, and a composite material without using adhesives which are classified as carcinogenic, mutagenic and toxic agent. In order to have a good adhesion between cured EPDM elastomer and composite material with epoxy resin without adhesive, it is crucial to understand mechanisms of self assembly of these materials: role of physical bonds, influence of roughness, monomers diffusion and chemical reactions. This good understanding allows us editing material formulations, in our case copolymer in elastomer, to improve adhesion and remove surface treatment
Hamdoun, Bassam. "Composites copolymères/nanoparticules". Le Mans, 1995. http://www.theses.fr/1995LEMA1004.
Pełny tekst źródłaMa, Hongming. "Structure-property relationships in copolyester fibers and composite fibers". Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-04112004-150623/unrestricted/Ma%5FHongming%5F200405%5Fphd.pdf.
Pełny tekst źródłaCollard, David, Committee Co-Chair ; Schiraldi, David, Committee Member ; Liotta, Charles, Committee Member ; Weck, Marcus, Committee Member ; Srinivasarao, Mohan, Committee Member ; Kumar, Satish, Committee Co-Chair. Vita. Includes bibliographical references.
Basson, Nicolaas Christiaan. "The effect of molecular composition on the properties of polyolefin-wood composites". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80222.
Pełny tekst źródłaENGLISH ABSTRACT: Polymer composites, and in particular wood-polymer composites have become commercially and environmentally important materials. Studies in polyolefin-wood composites have mostly focused on polypropylene (PP) and polyethylene (PE). To our knowledge, no study has been undertaken on advancing impact polypropylene copolymer (IPPC)-wood composites as a suitable alternative to using PP and PE. IPPC have proven to be a suitable alternative to PP at low temperatures to improve impact resistance for manufactured polymer products, and could be a great addition to improved properties for wood polymer composites. This study shows that the physical properties of IPPC-wood composites can be markedly improved when compatibilizer(s) are used to improve the distribution of the wood within the matrix, as well as improving the interaction between the wood and the polymer matrix.. The use of different compatibilizers, vi polypropylene-graft-maleic anhydride (PPgMA) and poly(ethylene-co-vinyl alcohol) (EvOH) results in different physical properties. Using simple admixtures of the PPgMA and EvOH in IPPC-wood composites result in a large spread of results, while pre-reacting the PPgMA and EvOH to form a joint compatibilizer gives reproducible results w.r.t the physical testing. A study of the fundamental interactions of the compatibilizer(s) with the molecular components of the IPPCs was undertaken. The IPPCs used were fractionated by preparative temperature rising elution fractionation, and the fractions were mixed with the compatibilizers. To this end, fluorescence microscopy was utilized to study the interaction. The results clearly indicate that the interaction of the PPgMA with the fractions differ from that of the EvOH. These differences can be explained in terms of the chemical composition distribution within the IPPC fractions. Atomic force microscopy (AFM) was used to study adhesive forces between compatibilizer, polymer and cellulose and lignin. Successful coating of AFM tips with PPgMA and EvOH was achieved. Whilst interactions based on chemical force microscopy (CFM) could not be quantified, the AFM results in conjunction with fluorescence spectroscopy provided meaningful insight in the way that compatibilizers interact with both the wood and the impact copolymers used in this study.
AFRIKAANSE OPSOMMING: Polimeer saamgestelde material, en meer spesifiek hout-polimeer saamgestelde material het die afgelope tyd belangrike produkte geword, beide kommersieel en in verband met omgewingvriendelikheid. Navorsing op die gebied van poli(olefien)-hout komposiete het tot op hede meestal gefokus op die grbruik van poli(propileen) (PP) en poli(etileen) (PE). Sover dit on kennis strek is daar nog geen studie gedoen om die gebied van impak polipropileen kopolimere (IPPK)-hout komposiete uit te bou nie. IPPKs is ‘n geskikte alternatief vir PP in veral laetemperatuur aanwendings. Die gebruik van IPPKs as matriks vir die hout komposiete kan ‘n groot staqp vorentoe beteken. Hierdie studie wys dat die fisiese eienskappe van iPPK-hout komposiete merkwaardig verbeter kan word waneer versoeningmateriale gebruik word om die verspreiding van die hout in die polimeermatriks sowel as die interaksie tussen die hout en polimeer te verbeter. Die gebruik van verskillende versoenings material, t.w poli(propileen-ent-maleinsuur anhidried) (PPeMA) en pol(etlieen-ko-viniel alkohol) (EVOH). Deur gebruik te maak van eenvoudige mengsels van PPeMA en EVOH in IPPK-hout composite het ‘n geweldige wye verpreiding van resultate tot gevolg gehad, terwyl ‘n voorafgaande reaksie tussen die PPeMA en die EVOH om ‘n saamgestelde versoeningmateriaal te maak tot gevolg gehad het dat reproduseerbare resultate verkry kon word. ‘n Studie van die fundamentele interaksies van die versoeningsmateriale met die molkulêre komponente van die IPPKs is uitgevoer. Die IPPKs is gefraksioneer deur preparatiewe temperatuur-stygende uitloog frakasionering en die fraksies is gemeng met die versoeningmateriale. Fluoressensie mikroskopie is gebruik om hierdie interaksies te bestudeer. Die resultate dui duidelik daarop dat die interaksie van die PPeMA met die fraksies verskil met die van die EVOH. Die verskille kan verduidelik word aan die hand van die chemiese samestelling verspreiding van die IPPK fraksies. Atoomkrag mikroskopie (AKM) is gebruik om die adhesive-kragte tussen die versoeningmateriale, polimere, sellulose en lignien. AKM tippe is suksesvol bedek met PPeMA en EVOH, onderskeidelik. Alhoewel interaksies gebaseer op chemiese krag mikroskopie (CKM) nie gekwantifiseer kon word nie, lewer hierdie resultate tesame met die fluoressensie spektroskopie unieke insig in die manier wat versoeningmateriale met beide die hout en die polimeer reageer.
McElroy, C. R. "Composite materials from copolymers incorporating renewable resources". Thesis, Keele University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491843.
Pełny tekst źródłaJohns, Katharine. "Studies on composite copolymer particles". Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284316.
Pełny tekst źródłaMarcilloux, Jérôme. "Contribution à l'étude de charges organiques pour matériaux composites à matrice élastomère : modification de surface de particules de polystyrène réticulées et encapsulation d'hydrocarbures polycycliques". Mulhouse, 1995. http://www.theses.fr/1995MULH0365.
Pełny tekst źródłaKalloudis, Michail. "Thin polymer films of block copolymers and blend/nanoparticle composites". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7894.
Pełny tekst źródłaBier, Frédéric. "Conception et synthèse d’une matrice polymère thermoplastique pour l’obtention de matériaux composites recyclables, résistants au feu et utilisables dans l’industrie". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0040.
Pełny tekst źródłaNovel poly(methyl methacrylate) (PMMA) thermoplastic matrices which can be used in the elaboration of composite materials have been synthesized and characterized from the point of view of their glass transition temperature (by differential scanning calorimetry) and their thermal degradation (by thermogravimetric analysis and by pyrolysis combustion flow calorimetry). The strategy followed was to incorporate in the PMMA chains repeat units comprising a flame retardant phosphorous side group via a radical copolymerization of MMA with a phosphorus-containing monomer. A set of phosphorus-containing flame retardant monomers has been synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 oxide (DOPO) by varying the nature of the polymerizable function (styrenic, acrylic, methacrylic), the nature of the atom bound to the phophore (oxygen, carbon, nitrogen) and the length of the spacer arm. We have shown that by adapting the structure and the quantity of the phosphorus repeating units, the glass transition temperature of the material was kept close to that of the PMMA while the thermal degradation of the materials was shifted to higher temperatures. Comparatively, physical blends of PMMA and DOPO with equivalent phosphorus contents exhibited significantly lower glass transition temperatures
Chang, Kaiguo. "Synthesis and characterization of conducting polymer-inorganic composite materials /". View online ; access limited to URI, 2000. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3108646.
Pełny tekst źródłaKsiążki na temat "Copolymars composites"
Saini, Parveen, red. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119137160.
Pełny tekst źródłaStoĭko, Fakirov, red. Handbook of thermoplastic polyesters: Homopolymers, copolymers, blends, and composites. Weinheim: Wiley-VCH, 2002.
Znajdź pełny tekst źródłaNaik, Hemantkumar Amratlal. Novel crosslinkable polyethersulphone copolymers as candidate matrix materials for composites. Birmingham: University of Birmingham, 1989.
Znajdź pełny tekst źródłaWilkinson, A. N. Copolymers and structural composites formed by reaction injection moulding: RIM. Manchester: UMIST, 1990.
Znajdź pełny tekst źródłaManners, Ian. Synthetic metal-containing polymers. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaM, Hergenrother P., Bass R. G i Langley Research Center, red. Synthesis of imide/arylene ether copolymers for adhesives and composite matrices. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Znajdź pełny tekst źródłaM, Hergenrother P., Bass R. G i Langley Research Center, red. Synthesis of imide/arylene ether copolymers for adhesives and composite matrices. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Znajdź pełny tekst źródłaShirō, Kobayashi, i SpringerLink (Online service), red. Polymer Materials: Block-Copolymers, Nanocomposites, Organic/Inorganic Hybrids, Polymethylenes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaWash.) IEEE Photovoltaic Specialists Conference (37th 2011 Seattle. Oligomeric dithienopyrrole-thienopyrrolodione (DTP-TPD) donor-acceptor copolymer for organic photovoltaics: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaSynthetic metal-containing polymers. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Copolymars composites"
Ji, S., H. Gui, G. Guan, M. Zhou, Q. Guo i M. Y. J. Tan. "Designing Waterborne Protective Coatings Through Manipulating the Nanostructure of Acrylic-Based Nanocomposites". W Lecture Notes in Civil Engineering, 113–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_14.
Pełny tekst źródłaChandrasekhar, Prasanna. "“Composites” (Blends) and Copolymers". W Conducting Polymers, Fundamentals and Applications, 253–74. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_10.
Pełny tekst źródłaMinkova, L. I., i M. C. Michailov. "Thermomechanical Behaviour of Graft Styrene Copolymers and their Composites". W Polymer Composites, redaktor Blahoslav Sedlácek, 275–82. Berlin, Boston: De Gruyter, 1986. http://dx.doi.org/10.1515/9783110856934-023.
Pełny tekst źródłaGalli, P., J. C. Haylock i T. Simonazzi. "Manufacturing and properties of polypropylene copolymers". W Polypropylene Structure, blends and composites, 1–24. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0521-7_1.
Pełny tekst źródłaHaynes, Dahlia, Mihaela C. Stefan i Richard D. McCullough. "Conjugated-Insulating Block Copolymers: Synthesis, Morphology, and Electronic Properties". W Semiconducting Polymer Composites, 299–330. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch11.
Pełny tekst źródłaNaseem, Z., K. Sagoe-Crentsil i W. Duan. "Graphene-Induced Nano- and Microscale Modification of Polymer Structures in Cement Composite Systems". W Lecture Notes in Civil Engineering, 527–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_56.
Pełny tekst źródłaMonasse, B., i J. M. Haudin. "Molecular structure of polypropylene homo- and copolymers". W Polypropylene Structure, blends and composites, 3–30. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0567-5_1.
Pełny tekst źródłaCheng, S. Z. D., J. J. Janimak i J. Rodriguez. "Crystalline structures of polypropylene homo- and copolymers". W Polypropylene Structure, blends and composites, 31–55. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0567-5_2.
Pełny tekst źródłaNguyen, Thien Phap, i Pascale Jolinat. "Conjugated Polymer Composites and Copolymers for Light-Emitting Diodes and Laser". W Semiconducting Polymer Composites, 427–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch15.
Pełny tekst źródłaLi, Jiaxing, Yongshun Huang i Dadong Shao. "Conjugated Polymer-Based Composites for Water Purification". W Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, 581–618. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119137160.ch11.
Pełny tekst źródłaStreszczenia konferencji na temat "Copolymars composites"
Calvert, Paul D., Mualla Oner, Jeremy Burdon, Peter C. Rieke i Kelly Farmer. "Block copolymers for biomimetic composites". W 1993 North American Conference on Smart Structures and Materials, redaktor Vijay K. Varadan. SPIE, 1993. http://dx.doi.org/10.1117/12.148492.
Pełny tekst źródłaGonzalez-Gutierrez, Joamin, Zerihun Mellese Megen, Bernd Steffen von Bernstorff i Igor Emri. "Shear creep compliance of polyoxymethylene copolymers with different molecular weights". W TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876770.
Pełny tekst źródłaSimachev, Aleksandr, Ivan Storozhuk, Nadezhda Pavlukovich, Elena Platonova, Ekaterina Platonova, Vladislav Shevtsov i Aleksandr Tereshkov. "Copolysulfones with increased heat resistance". W IV International Forum Advances in Composite Science and Technologies (Moscow, 2 – 3 December 2021). "Publishing company "World of science", LLC, 2022. http://dx.doi.org/10.15862/67mnnpk22-02.
Pełny tekst źródłaPiotto, S., S. Concilio, P. Iannelli, F. Mavelli, Alberto D’Amore, Domenico Acierno i Luigi Grassia. "DDFT Simulations of the Assembly of Block Copolymers in Confined Systems". W IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989067.
Pełny tekst źródłaDavydova, N. K., O. V. Sinitsyna i K. E. Zinoviev. "Preparation of synthetic copolymers potentially capable to interact with biomacromolecules". W 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738449.
Pełny tekst źródłaOYA, YUTAKA, NAOFUMI UMEMOTO i TOMONAGA OKABE. "Changes in Micro-Phase Separation of Di-Block Copolymer Melts Induced by a Circle Fiber". W American Society for Composites 2018. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25966.
Pełny tekst źródłaPenco, M., G. Spagnoli, S. Della Sciucca, F. Samperi, R. Mendichi, Alberto D’Amore, Domenico Acierno i Luigi Grassia. "EFFECT ON STRUCTURAL RELAXATION OF THE POLY(METHYL-METHACRYLATE) COPOLYMERS CHAIN FLEXIBILITY". W IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989037.
Pełny tekst źródłaDi Lorenzo, Maria Laura, i René Androsch. "Random butene-1/ethylene copolymers: Influence of composition on the three-phase structure". W TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876801.
Pełny tekst źródłaHolzworth, Kristin, Gregory Williams, Bedri Arman, Zhibin Guan, Gaurav Arya i Sia Nemat-Nasser. "Polyurea With Hybrid Polymer Grafted Nanoparticles: A Parametric Study". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88395.
Pełny tekst źródłaSparnacci, Katia, Diego Antonioli, Valentina Gianotti, Federico Ferrarese Lupi, Tommaso Jacopo Giammaria, Gabriele Seguini, Michele Perego i Michele Laus. "Surface engineering with functional random copolymers for nanolithographic applications". W VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949745.
Pełny tekst źródłaRaporty organizacyjne na temat "Copolymars composites"
Harris, James, Yossef A. Elabd, Eugene Napadensky i Paul Moy. Thermal Processing and Composite Laminate Formation of Ionic Block Copolymers for Protective Clothing. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2002. http://dx.doi.org/10.21236/ada410616.
Pełny tekst źródłaYang, Dali, Kevin Mark Hubbard, David James Devlin, Kevin C. Henderson i Robin Montoya Pacheco. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites. Office of Scientific and Technical Information (OSTI), marzec 2015. http://dx.doi.org/10.2172/1172203.
Pełny tekst źródłaWnek, Gary E., i Thomas W. Smith. Block Copolymer Composites: A Bio-Optic Synthetic System for Dynamic Control of Refractive Index. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2005. http://dx.doi.org/10.21236/ada434903.
Pełny tekst źródła