Gotowa bibliografia na temat „Cooling dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cooling dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cooling dynamics"
Horiuchi, Noriaki. "Cooling dynamics". Nature Photonics 10, nr 12 (29.11.2016): 751. http://dx.doi.org/10.1038/nphoton.2016.246.
Pełny tekst źródłaBALMFORTH, N. J., R. V. CRASTER i R. SASSI. "Dynamics of cooling viscoplastic domes". Journal of Fluid Mechanics 499 (25.01.2004): 149–82. http://dx.doi.org/10.1017/s0022112003006840.
Pełny tekst źródłaHOANG, VO VAN, i SUHK KUN OH. "COOLING RATE EFFECTS ON DYNAMICS IN SUPERCOOLED Al2O3". International Journal of Modern Physics B 20, nr 08 (30.03.2006): 947–67. http://dx.doi.org/10.1142/s0217979206033589.
Pełny tekst źródłaPark, Chanwoo, Jaewoo Seol, Ali Aldalbahi, Mostafizur Rahaman, Alexander L. Yarin i Sam S. Yoon. "Drop impact phenomena and spray cooling on hot nanotextured surfaces of various architectures and dynamic wettability". Physics of Fluids 35, nr 2 (luty 2023): 027126. http://dx.doi.org/10.1063/5.0139960.
Pełny tekst źródłaZhang, Junyan, Yunwei Mao, Dong Wang, Ju Li i Yunzhi Wang. "Accelerating ferroic ageing dynamics upon cooling". NPG Asia Materials 8, nr 10 (październik 2016): e319-e319. http://dx.doi.org/10.1038/am.2016.152.
Pełny tekst źródłaVega, Aurelio, Fernando V. Díez i José M. . Alvarez. "Dynamics of a Batch Cooling Crystallizer." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 29, nr 5 (1996): 817–24. http://dx.doi.org/10.1252/jcej.29.817.
Pełny tekst źródłaHägele, D., R. Zimmermann, M. Oestreich, M. R. Hofmann, W. W. Rühle, B. K. Meyer, H. Amano i I. Akasaki. "Cooling dynamics of excitons in GaN". Physical Review B 59, nr 12 (15.03.1999): R7797—R7800. http://dx.doi.org/10.1103/physrevb.59.r7797.
Pełny tekst źródłaAlouani Bibi, Fathallah, James Binney, Katherine Blundell i Henrik Omma. "AGN effect on cooling flow dynamics". Astrophysics and Space Science 311, nr 1-3 (18.07.2007): 317–21. http://dx.doi.org/10.1007/s10509-007-9542-4.
Pełny tekst źródłaLee, S. Y., Y. Zhang i K. Y. Ng. "Damping dynamics of optical stochastic cooling". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 532, nr 1-2 (październik 2004): 340–44. http://dx.doi.org/10.1016/j.nima.2004.06.063.
Pełny tekst źródłaLiu, T. X., W. G. Lynch, M. J. van Goethem, X. D. Liu, R. Shomin, W. P. Tan, M. B. Tsang i in. "Cooling dynamics in multi-fragmentation processes". Europhysics Letters (EPL) 74, nr 5 (czerwiec 2006): 806–12. http://dx.doi.org/10.1209/epl/i2006-10040-x.
Pełny tekst źródłaRozprawy doktorskie na temat "Cooling dynamics"
Ryjkov, Vladimir Leonidovich. "Laser cooling and sympathetic cooling in a linear quadrupole rf trap". Texas A&M University, 2003. http://hdl.handle.net/1969.1/1637.
Pełny tekst źródłaRogers, Chris. "Beam Dynamics in an Ionisation Cooling Channel". Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499277.
Pełny tekst źródłaSargison, Jane Elizabeth. "Development of a novel film cooling hole geometry". Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365427.
Pełny tekst źródłaDall'Olio, Giacomo. "CFD study of electric motor's cooling". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Znajdź pełny tekst źródłaPetters, Jonathan L. Clothiaux Eugene. "The impact of radiative heating and cooling on marine stratocumulus dynamics". [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4602/index.html.
Pełny tekst źródłaGudmundsson, Yngvi. "Performance evaluation of wet-cooling tower fills with computational fluid dynamics". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19908.
Pełny tekst źródłaENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to cross- and counterflow Merkel, e-NTU and Poppe models. The models are compared by applying them to a range of experimental data measured in the cross- and counterflow wet-cooling tower test facility at Stellenbosch University. The Reuter model is found to effectively give the same results as the Poppe method for cross- and counterflow fill configuration as well as the Merkel and e-NTU method if the assumptions as made by Merkel are implemented. A second order upwind discretization method is applied to the Reuter model for increased accuracy and compared to solution methods generally used to solve cross- and counterflow Merkel and Poppe models. First order methods used to solve the Reuter model and crossflow Merkel and Poppe models are found to need cell sizes four times smaller than the second order method to obtain the same results. The Reuter model is successfully implemented in two- and three-dimensional ANSYS-Fluent® CFD models for under- and supersaturated air. Heat and mass transfer in the fill area is simulated with a user defined function that employs a second order upwind method. The two dimensional ANSYS-Fluent® model is verified by means of a programmed numerical model for crossflow, counterflow and cross-counterflow.
AFRIKAANSE OPSOMMING: ‘n Natkoeltoring model vir die evaluering van pakkings werkverrigting, wat deur Reuter ontwikkel is, word in Kartesiese koördinate afgelei vir ‘n reghoekige koeltoring en word vergelyk met kruis- en teenvloei Merkel, e-NTU en Poppe modelle. Die verskillende modelle word vergelyk deur hulle op ‘n reeks eksperimentele data toe te pas wat in die kruis- en teenvloei natkoeltoring toetsfasiliteit by die Universiteit van Stellenbosch gemeet is. Dit is bevind dat die Reuter model effektief dieselfde resultate gee as die Poppe model vir kruis- en teenvloei pakkingskonfigurasies sowel as die Merkel en e-NTU metode, indien dieselfde aannames wat deur Merkel gemaak is geїmplementeer word. ‘n Tweede orde “upwind” metode word op die Reuter model toegepas vir hoër akkuraatheid en word vergelyk met oplossingsmetodes wat gewoonlik gebruik word om kruis- en teenvloei Merkel en Poppe modelle op te los. Eerste orde metodes wat gebruik is om die Reuter model en kruisvloei Merkel en Poppe modelle op te los benodig rooster selle wat vier keer kleiner is as vir tweede orde metodes om dieselfde resultaat te verkry. Die Reuter model is suksesvol in twee- en driedimensionele ANSYS-Fluent® BVD (“CFD”) modelle geїmplementeer vir on- en oorversadigde lug. Warmte- en massaoordrag in die pakkingsgebied word gesimuleer mbv ‘n gebruiker gedefinieerde funksie (“user defined function”) wat van ‘n tweede orde numeriese metode gebruik maak. Die tweedimensionele ANSYS-Fluent® model word m.b.v. ‘n geprogrameerde numeriese model bevestig vir kruis-, teen- en kruis-teenvloei.
Khan, Jobaidur Rahman. "Fog Cooling, Wet Compression and Droplet Dynamics In Gas Turbine Compressors". ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/908.
Pełny tekst źródłaDunn, Josh W. "Stochastic models of atom-photon dynamics with applications to cooling quantum gases". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3273696.
Pełny tekst źródłaLippmann, Jan Frederik [Verfasser]. "Laser Cooling of Semiconductors: Ultrafast Carrier and Lattice Dynamics / Jan Frederik Lippmann". München : Verlag Dr. Hut, 2018. http://d-nb.info/1172581983/34.
Pełny tekst źródłaJohansson, Adam, i Jonas Gunnarsson. "Predicting Flow Dynamics of an Entire Engine Cooling System Using 3D CFD". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-62763.
Pełny tekst źródłaKsiążki na temat "Cooling dynamics"
McHugh, P. R. Natural circulation cooling in U.S. pressurized water reactors. Washington, DC: Division of Systems Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.
Znajdź pełny tekst źródłaNATO, Advanced Research Workshop on Cooling Flows in Clusters and Galaxies (1987 Cambridge England). Cooling flows in clusters and galaxies. Dordrecht: Kluwer Academic Publishers, 1988.
Znajdź pełny tekst źródłaWard, S. C. Validation of a CFD model for predicting film cooling performance. Washington, D. C: American Institute of Aeronautics and Astronautics, 1993.
Znajdź pełny tekst źródłaGanchev, B. G. Okhlazhdenie ėlementov i͡a︡dernykh reaktorov stekai͡u︡shchimi plenkami. Moskva: Ėnergoatomizdat, 1987.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. The mass and dynamics of cD clusters with cooling flows. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaWen-ping, Wang, i NASA Glenn Research Center, red. Multiphysics simulation of active hypersonic lip cooling. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Znajdź pełny tekst źródłaSandīpa, Datta, i Ekkad Srinath 1958-, red. Gas turbine heat transfer and cooling technology. Wyd. 2. Boca Raton, FL: Taylor & Francis, 2012.
Znajdź pełny tekst źródłaFryer, C. P. The postirradiation examination of the DC melt dynamics experiments. Washington, DC: Division of Reactor Accident Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Znajdź pełny tekst źródłaA, Cavicchia M., Alfano R. R i United States. National Aeronautics and Space Administration., red. Hot carrier dynamics in the X valley in Si and Ge measured by pump-IR-probe absorption spectroscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaA, Cavicchia M., Alfano R. R i United States. National Aeronautics and Space Administration., red. Hot carrier dynamics in the X valley in Si and Ge measured by pump-IR-probe absorption spectroscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Cooling dynamics"
Goldhirsch, Isaac, S. Henri Noskowicz i Oded Bar-Lev. "The Homogeneous Cooling State Revisited". W Granular Gas Dynamics, 37–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39843-1_2.
Pełny tekst źródłaInnes, D. E. "Catastrophic Cooling Diagnostics". W Kinematics and Dynamics of Diffuse Astrophysical Media, 311–16. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0926-0_50.
Pełny tekst źródłaBaldassarri, Andrea, Umberto Marini Bettolo Marconi i Andrea Puglisi. "Velocity Fluctuations in Cooling Granular Gases". W Granular Gas Dynamics, 95–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39843-1_4.
Pełny tekst źródłaReischl, Uwe, Kylie Pace, Conrad Colby i Ravindra Goonitelleke. "Cooling Dynamics of Wet Clothing". W Advances in Intelligent Systems and Computing, 311–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41694-6_32.
Pełny tekst źródłaHauptenbuchner, Barbara, i Milan David. "The possibility of dynamic diagnostics at high cooling towers". W Structural Dynamics, 363–67. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-52.
Pełny tekst źródłaO’Connell, R. W. "Star Formation in Cooling Flows". W Structure and Dynamics of Elliptical Galaxies, 167–78. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3971-4_14.
Pełny tekst źródłaBöhringer, Hans, i Gregor E. Morfill. "Dynamics of Cosmic Rays in Cooling Flows". W Cooling Flows in Clusters and Galaxies, 87–91. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2953-1_9.
Pełny tekst źródłaBinney, James. "Dynamics of E Galaxies and Cluster Sources". W Cooling Flows in Clusters and Galaxies, 225–33. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2953-1_27.
Pełny tekst źródłaKolev, Nikolay Ivanov. "External Cooling of Reactor Vessels during Severe Accident". W Multiphase Flow Dynamics 5, 637–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15156-4_16.
Pełny tekst źródłaKolev, Nikolay I. "External cooling of reactor vessels during severe accident". W Multiphase Flow Dynamics 4, 497–548. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92918-5_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Cooling dynamics"
Dietrich, J. "Studies of Beam Dynamics in Cooler Rings". W BEAM COOLING AND RELATED TOPICS: International Workshop on Beam Cooling and Related Topics - COOL05. AIP, 2006. http://dx.doi.org/10.1063/1.2190104.
Pełny tekst źródłaRAGHUNATHAN, S., F. ZARIFI-RAD i D. MABEY. "Effect of model cooling on periodic transonic flow". W 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1714.
Pełny tekst źródłaParsa, Zohreh, i Pavel Zenkevich. "Kinetics of muon longitudinal cooling". W Beam stability and nonlinear dynamics. American Institute of Physics, 1997. http://dx.doi.org/10.1063/1.53499.
Pełny tekst źródłaShevy, Y. "Laser Cooling with Squeezed Light." W Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.stsa581.
Pełny tekst źródłaFedotov, A. V. "Electron Cooling Dynamics for RHIC". W HIGH INTENSITY AND HIGH BRIGHTNESS HADRON BEAMS: 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams. AIP, 2005. http://dx.doi.org/10.1063/1.1949575.
Pełny tekst źródłaParsa, Zohreh. "Ionization cooling and muon dynamics". W Physics potential and development of μ. AIP, 1998. http://dx.doi.org/10.1063/1.56432.
Pełny tekst źródłaSkrinsky, A. N. "Ionization cooling and muon collider". W The 9th advanced ICFA beam dynamics workshop: Beam dynamics and technology issues for μ+μ− colliders. American Institute of Physics, 1996. http://dx.doi.org/10.1063/1.50897.
Pełny tekst źródłaMelis, Matthew, i Wen-Ping Wang. "Multiphysics simulation of active hypersonic cowl lip cooling". W 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3510.
Pełny tekst źródłaReijasse, Philippe, i Luca Boccaletto. "Nozzle Flow Separation with Film Cooling". W 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4150.
Pełny tekst źródłaWANG, JONG. "Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows". W 20th Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1867.
Pełny tekst źródłaRaporty organizacyjne na temat "Cooling dynamics"
Rogers, Chris. Beam Dynamics in a Muon Ionisation Cooling Channel. Office of Scientific and Technical Information (OSTI), wrzesień 2008. http://dx.doi.org/10.2172/983633.
Pełny tekst źródłaYang, Jiann C. On the cooling of a 360� video camera to observe fire dynamics in situ. Gaithersburg, MD: National Institute of Standards and Technology, grudzień 2019. http://dx.doi.org/10.6028/nist.tn.2080.
Pełny tekst źródłaOwen, Justin. Simulation of Electron Beam Dynamics in the 22 MeV Accelerator for a Coherent Electron Cooling Proof of Principle Experiment. Office of Scientific and Technical Information (OSTI), grudzień 2013. http://dx.doi.org/10.2172/1341607.
Pełny tekst źródłaAho, J. M., C. S. Anderson, K. B. Floyd, M. T. Negus i M. R. Meador. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report. Office of Scientific and Technical Information (OSTI), czerwiec 1986. http://dx.doi.org/10.2172/10118268.
Pełny tekst źródłaO'Brien, Russ. Absorber Cooling Circuits Dynamic Pressure Study. Office of Scientific and Technical Information (OSTI), lipiec 2018. http://dx.doi.org/10.2172/1480942.
Pełny tekst źródłaWitzig, Andreas, Camilo Tello, Franziska Schranz, Johannes Bruderer i Matthias Haase. Quantifying energy-saving measures in office buildings by simulation in 2D cross sections. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541623658.
Pełny tekst źródłaAbboud, Alexander, Jacob Lehmer, Brandon Starks, Tyler Phillips i Jake Gentle. Dynamic Line Rating Study of Concurrent Cooling for a Proposed Wind Farm. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1924425.
Pełny tekst źródłaOlivieri, David Nicholas. A Dynamic Momentum Compaction Factor Lattice for Improvements to Stochastic Cooling in Storage Rings. Office of Scientific and Technical Information (OSTI), styczeń 1996. http://dx.doi.org/10.2172/1422805.
Pełny tekst źródłaVijaya Kumar, Thea, Ram Srinivasan i J. DeRienzis. Fluid dynamic simulation and analysis of water-cooling systems for the Electron-Ion Collider. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1964078.
Pełny tekst źródłaSakagawa, Keiji, Hideto Yoshitake i Eiji Ihara. Computational Fluid Dynamics for Design of Motorcycles (Numerical Analysis of Coolant Flow and Aerodynamics). Warrendale, PA: SAE International, październik 2005. http://dx.doi.org/10.4271/2005-32-0033.
Pełny tekst źródła