Artykuły w czasopismach na temat „CONVERSION OF ENERGY”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: CONVERSION OF ENERGY.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CONVERSION OF ENERGY”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kishore, Abhishek, i Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion". International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31.08.2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola i Yong Wang. "Catalysts for Emerging Energy Applications". MRS Bulletin 33, nr 4 (kwiecień 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.

Pełny tekst źródła
Streszczenie:
AbstractCatalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels.
Style APA, Harvard, Vancouver, ISO itp.
3

YAMABE, Chobei, i Kenji HORII. "Direct energy conversion." Journal of the Fuel Society of Japan 68, nr 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bossel, Ulf. "Alternative Energy Conversion". Ceramics in Modern Technologies 2, nr 2 (29.05.2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pilon, Laurent, i Ian M. McKinley. "PYROELECTRIC ENERGY CONVERSION". Annual Review of Heat Transfer 19, nr 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Batschelet, William H. "Photochemical energy conversion". Journal of Chemical Education 63, nr 5 (maj 1986): 435. http://dx.doi.org/10.1021/ed063p435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Peter, L. M. "Photochemical energy conversion". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, nr 1-2 (czerwiec 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Marignetti, Fabrizio, Haitao Yu i Luigi Cappelli. "Marine Energy Conversion". Advances in Mechanical Engineering 5 (styczeń 2013): 457083. http://dx.doi.org/10.1155/2013/457083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dragt, J. B. "Wind Energy Conversion". Europhysics News 24, nr 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Palacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell i in. "Bioinspired energy conversion". Pure and Applied Chemistry 77, nr 6 (1.01.2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.

Pełny tekst źródła
Streszczenie:
Artificial photosynthetic antenna systems have been synthesized based on carotenoid polyenes and polymer-polyenes covalently attached to tetrapyrroles. Absorption of light in the blue/green region of the spectra excites the polyenes to their S2 state, and ultrafast singlet energy transfer to the tetrapyrroles occurs when the chromophores are in partial conjugation. The additional participation of other excited states of the polyene in the energy-transfer process is a requirement for perfect antenna function. Analogs of photosynthetic reaction centers consisting of tetrapyrrole chromophores covalently linked to electron acceptors and donors have been prepared. Excitation of these constructs results in a cascade of energy transfer/electron transfer which, in selected cases, forms a final charge-separated state characterized by a giant dipole moment (>150 D), a quantum yield approaching unity, a significant fraction of the photon energy stored as chemical potential, and a lifetime sufficient for reaction with secondary electron donors and acceptors. A new antenna-reaction center complex is described in which a carotenoid moiety is located in partial conjugation with the tetrapyrrole π-system allowing fast energy transfer (<100 fs) between the chromophores. In this assembly, the energy transduction process can be initiated by light absorbed by the polyene.
Style APA, Harvard, Vancouver, ISO itp.
11

Herring, A. M., i V. Di Noto. "Electrochemical Energy Conversion". Interface magazine 24, nr 2 (1.01.2015): 37. http://dx.doi.org/10.1149/2.f01152if.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Crabtree, George W., i Nathan S. Lewis. "Solar energy conversion". Physics Today 60, nr 3 (marzec 2007): 37–42. http://dx.doi.org/10.1063/1.2718755.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kamalov, ValeyF. "Photochemical energy conversion". Journal of Photochemistry and Photobiology B: Biology 5, nr 2 (kwiecień 1990): 273–74. http://dx.doi.org/10.1016/1011-1344(90)80014-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Lewerenz, Hans-Joachim. "Photoelectrochemical Energy Conversion". ChemPhysChem 13, nr 12 (23.03.2012): 2807–8. http://dx.doi.org/10.1002/cphc.201200199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Leijon, M., i K. Nilsson. "Direct electric energy conversion system for energy conversion from marine currents". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221, nr 2 (marzec 2007): 201–5. http://dx.doi.org/10.1243/09576509jpe303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mori, I., i K. Sumitomo. "Direct energy conversion of plasma energy". IEEE Transactions on Plasma Science 16, nr 6 (1988): 623–30. http://dx.doi.org/10.1109/27.16550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Mishima, Tomokazu. "Report on the 7th IEEE Energy Conversion Congress and Exposition (ECCE2015)". Journal of the Japan Institute of Power Electronics 41 (2015): 181. http://dx.doi.org/10.5416/jipe.41.181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ohta, Tokio. "Thermoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, nr 3 (1996): 196–201. http://dx.doi.org/10.1541/ieejfms1990.116.3_196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Matsubara, Kakuei. "Thermoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, nr 3 (1996): 202–6. http://dx.doi.org/10.1541/ieejfms1990.116.3_202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kajikawa, Takenobu. "Thremoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, nr 3 (1996): 207–11. http://dx.doi.org/10.1541/ieejfms1990.116.3_207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bybee, Karen. "Ocean-Thermal-Energy Conversion". Journal of Petroleum Technology 61, nr 07 (1.07.2009): 65–66. http://dx.doi.org/10.2118/0709-0065-jpt.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sobczyk, Wiktoria, Oksana Nagorniuk, Olga Riabushenko i Jakub Wlizło. "Solar Energy Conversion Methods". Edukacja – Technika – Informatyka 23, nr 1 (2018): 73–76. http://dx.doi.org/10.15584/eti.2018.1.8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Abed, Youssif, i Mohamed Mohamed Tantawy. "Solar Energy Conversion.(Dept.E)". MEJ. Mansoura Engineering Journal 4, nr 2 (16.12.2021): 71–91. http://dx.doi.org/10.21608/bfemu.2021.187375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ohnaka, Itsuo, i Kaoru Kimura. "Thermoelectric Energy Conversion Materials". Journal of the Japan Institute of Metals 63, nr 11 (1999): 1367. http://dx.doi.org/10.2320/jinstmet1952.63.11_1367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Tinaikar, Aashay. "Ocean Thermal Energy Conversion". International Journal of Energy and Power Engineering 2, nr 4 (2013): 143. http://dx.doi.org/10.11648/j.ijepe.20130204.11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Avery, William H. "Ocean Thermal Energy Conversion". Maritime Studies 1985, nr 23 (maj 1985): 8–10. http://dx.doi.org/10.1080/08102597.1985.11800569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Moore, Glenis. "Ocean thermal energy conversion". Electronics and Power 33, nr 10 (1987): 649. http://dx.doi.org/10.1049/ep.1987.0386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Yokota, Toshikazu. "Unidentified Energy Conversion Technology". Journal of the Society of Mechanical Engineers 95, nr 886 (1992): 821–24. http://dx.doi.org/10.1299/jsmemag.95.886_821.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lewis, Nathan S. "Introduction: Solar Energy Conversion". Chemical Reviews 115, nr 23 (9.12.2015): 12631–32. http://dx.doi.org/10.1021/acs.chemrev.5b00654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kamat, Prashant V., i Gregory V. Hartland. "Plasmons for Energy Conversion". ACS Energy Letters 3, nr 6 (31.05.2018): 1467–69. http://dx.doi.org/10.1021/acsenergylett.8b00721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Rasor, N. S. "Thermionic energy conversion plasmas". IEEE Transactions on Plasma Science 19, nr 6 (1991): 1191–208. http://dx.doi.org/10.1109/27.125041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

WALZ, D. "Biothermokinetics of energy conversion". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1101, nr 2 (17.07.1992): 257–59. http://dx.doi.org/10.1016/s0005-2728(05)80034-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Wang, Xuxu, Dengwei Jing i Meng Ni. "Solar photocatalytic energy conversion". Science Bulletin 62, nr 9 (maj 2017): 597–98. http://dx.doi.org/10.1016/j.scib.2017.04.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Buller, Saskia, i Jennifer Strunk. "Nanostructure in energy conversion". Journal of Energy Chemistry 25, nr 2 (marzec 2016): 171–90. http://dx.doi.org/10.1016/j.jechem.2016.01.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Djilali, Ned. "Materials for energy conversion". Science Bulletin 61, nr 8 (kwiecień 2016): 585–86. http://dx.doi.org/10.1007/s11434-016-1047-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Fiechter, Sebastian, i Nitin Chopra. "Energy conversion and storage". Nanomaterials and Energy 1, nr 2 (marzec 2012): 63–64. http://dx.doi.org/10.1680/nme.12.00005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ramasamy, R. P. "Bioelectrochemical Energy Conversion Technologies". Interface magazine 24, nr 3 (1.01.2015): 53. http://dx.doi.org/10.1149/2.f03153if.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Chiu, Ching‐Sang. "Downslope modal energy conversion". Journal of the Acoustical Society of America 95, nr 3 (marzec 1994): 1654–57. http://dx.doi.org/10.1121/1.408552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Dürre, Peter, i Thomas Richard. "Microbial Energy Conversion revisited". Current Opinion in Biotechnology 22, nr 3 (czerwiec 2011): 309–11. http://dx.doi.org/10.1016/j.copbio.2011.04.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Takahashi, P., i A. Trenka. "Ocean thermal energy conversion". Fuel and Energy Abstracts 37, nr 3 (maj 1996): 201. http://dx.doi.org/10.1016/0140-6701(96)88809-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Barragán, V. María. "Membranes for Energy Conversion". Membranes 13, nr 8 (17.08.2023): 735. http://dx.doi.org/10.3390/membranes13080735.

Pełny tekst źródła
Streszczenie:
In the modern world, the level of global energy consumption continues to increase, with current methods of energy generation still greatly dependent on fossil fuels, which will become less accessible in the not-so-distant future [...]
Style APA, Harvard, Vancouver, ISO itp.
42

Dunbar, W. R., N. Lior i R. A. Gaggioli. "The Component Equations of Energy and Exergy". Journal of Energy Resources Technology 114, nr 1 (1.03.1992): 75–83. http://dx.doi.org/10.1115/1.2905924.

Pełny tekst źródła
Streszczenie:
Energy conversion processes inherently have associated irreversibility. A better understanding of energy conversion will motivate intuition to create new energy-conversion and energy-utilization technology. In the present article, such understanding is further enhanced by decomposing the equations of energy and exergy (availability, available energy, useful energy) to reveal the reversible and irreversible parts of energy transformations. New definitions of thermal, strain, chemical, mechanical and thermochemical forms of energy/exergy are justified and expressions for these properties and their changes are rigorously developed. In the resulting equations, terms appear which explicitly reveal the interconversions between the different forms of energy/exergy, including the breakdown into reversible and irreversible conversions. The equations are valid for chemically reacting or non-reacting inelastic fluids, with or without diffusion.
Style APA, Harvard, Vancouver, ISO itp.
43

Liu, Fu-Hu, Ya-Hui Chen, Ya-Qin Gao i Er-Qin Wang. "On Current Conversion between Particle Rapidity and Pseudorapidity Distributions in High Energy Collisions". Advances in High Energy Physics 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/710534.

Pełny tekst źródła
Streszczenie:
In high energy collisions, one usually needs to give a conversion between the particle rapidity and pseudorapidity distributions. Currently, two equivalent conversion formulas are used in experimental and theoretical analyses. An investigation in the present work shows that the two conversions are incomplete. Then, we give a revision on the current conversion between the particle rapidity and pseudorapidity distributions.
Style APA, Harvard, Vancouver, ISO itp.
44

Viveiros, Carla, Rui Melicio, Victor Mendes i Jose Igreja. "Adaptive and predictive controllers applied to onshore wind energy conversion system". AIMS Energy 6, nr 4 (2018): 615–31. http://dx.doi.org/10.3934/energy.2018.4.615.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Nakagawa, T. "Conversion of vortex energy into acoustic energy". Naturwissenschaften 74, nr 7 (lipiec 1987): 338–39. http://dx.doi.org/10.1007/bf00367929.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Hellebrand, H. J., V. Scholz i J. Kern. "Nitrogen conversion and nitrous oxide hot spots in energy crop cultivation". Research in Agricultural Engineering 54, No. 2 (24.06.2008): 58–67. http://dx.doi.org/10.17221/1001-rae.

Pełny tekst źródła
Streszczenie:
Since 1999, nitrous oxide (N<sub>2</sub>O) soil emissions from sites cultivated with energy plants have been measured by gas chromatography and gas flux chambers in experimental fields. The main aim of this study was the nitrogen conversion factor and its variability for sandy soils under climatic conditions of Central Europe. Annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants (grass, perennial rye, poplar, willow) were fertilised with three different levels of nitrogen (150 kg N/ha/year, 75 kg N/ha/year, and none). The annual nitrogen conversion factors were derived from the annual mean differences between the fertilised sites and non-fertilised control sites. The mean nitrogen conversion factor for the non-cultivated soils was lower (perennial crops: 0.4%) than that for the regularly cultivated soils (annual crops: 0.9%). Few times, enhanced N<sub>2</sub>O emission spots with maxima above 1000 &mu;<sub>2</sub>O/m<sup>2</sup>/h, lasting for several weeks, were observed in the course of measurements. The influence of these local peak emissions on the nitrogen conversion factor is discussed.
Style APA, Harvard, Vancouver, ISO itp.
47

Kim, Jaehyung, Hyemin Koo, Wonseok Chang i Daewon Pak. "Biological conversion of CO2to CH4in anaerobic fixed bed reactor under continuous operation". Journal of Energy Engineering 22, nr 4 (31.12.2013): 347–54. http://dx.doi.org/10.5855/energy.2013.22.4.347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Bagherian, Anthony, Mark Gershon i Sunil Kumar. "Unveiling the nexus of digital conversion and clean energy: An ISM-MICMAC and DEMATEL perspective". AIMS Energy 11, nr 5 (2023): 810–45. http://dx.doi.org/10.3934/energy.2023040.

Pełny tekst źródła
Streszczenie:
<abstract> <p>Our aim is to develop a hierarchical framework that assesses the interdependence of digital metrics impacting clean energy in the European energy market. The framework is evaluated to determine its applicability to clean energy and implementation. We utilize a taxonomy of digital metrics with the MICMAC ("Matrice d'Impacts Croisés-Multiplication Appliquée à un Classement") methodology and a questionnaire-based survey using DEMATEL to validate the framework. This results in an efficient hierarchy and contextual relationship between key metrics in the European energy industry. We investigate and simulate ten key metrics of digital conversion for clean energy in the energy domain, identifying the most significant effects, including the "decision-making process" the "sustainable value chain" the "sustainable supply chain", "sustainable product life cycle", and the "interconnection of diverse equipment". The MICMAC methodology is used to classify these parameters for a better understanding of their structure, and DEMATEL is employed to examine cause-and-effect relationships and linkages. The practical implications of this framework can assist institutions, experts, and academics in forecasting essential metrics and can complement existing studies on digital conversion and clean energy. By prioritizing these key parameters, improvements in convenience, efficiency, and the reduction of product fossilization can be achieved. The value and originality of this study lie in the novel advancements in analyzing digital conversion metrics in the European energy industry using a cohesive ISM, MICMAC, and DEMATEL framework.</p> </abstract>
Style APA, Harvard, Vancouver, ISO itp.
49

Maria Alexandre Linard, Fabíola, Cícero Marcos Tavares Cruz, Demercil de Souza Oliveira Júnior, René Pastor Torrico Bascopé i Gustavo Alves de Lima Henn. "Double Conversion Uninterrupted Energy System With Rectifier And The Inverter Integration". Eletrônica de Potência 15, nr 2 (1.05.2010): 59–66. http://dx.doi.org/10.18618/rep.2010.2.059066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Olabisi, O., P. C. Amalu, A. Eyitayo, Adegboyega Adegboyega, H. O. Oyeshola i C. O. Ogunkoya. "Overview of Energy Generation and Conversion Schemes in Sub-Saharan Settlement". International Journal of Research Publication and Reviews 4, nr 7 (lipiec 2023): 1400–1407. http://dx.doi.org/10.55248/gengpi.4.723.48276.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii