Gotowa bibliografia na temat „Convergence of Markov processes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Convergence of Markov processes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Convergence of Markov processes"
Abakuks, A., S. N. Ethier i T. G. Kurtz. "Markov Processes: Characterization and Convergence." Biometrics 43, nr 2 (czerwiec 1987): 484. http://dx.doi.org/10.2307/2531839.
Pełny tekst źródłaPerkins, Edwin, S. N. Ethier i T. G. Kurtz. "Markov Processes, Characterization and Convergence." Journal of the Royal Statistical Society. Series A (Statistics in Society) 151, nr 2 (1988): 367. http://dx.doi.org/10.2307/2982773.
Pełny tekst źródłaFranz, Uwe, Volkmar Liebscher i Stefan Zeiser. "Piecewise-Deterministic Markov Processes as Limits of Markov Jump Processes". Advances in Applied Probability 44, nr 3 (wrzesień 2012): 729–48. http://dx.doi.org/10.1239/aap/1346955262.
Pełny tekst źródłaFranz, Uwe, Volkmar Liebscher i Stefan Zeiser. "Piecewise-Deterministic Markov Processes as Limits of Markov Jump Processes". Advances in Applied Probability 44, nr 03 (wrzesień 2012): 729–48. http://dx.doi.org/10.1017/s0001867800005851.
Pełny tekst źródłaHWANG, CHII-RUEY. "ACCELERATING MONTE CARLO MARKOV PROCESSES". COSMOS 01, nr 01 (maj 2005): 87–94. http://dx.doi.org/10.1142/s0219607705000085.
Pełny tekst źródłaAldous, David J. "Book Review: Markov processes: Characterization and convergence". Bulletin of the American Mathematical Society 16, nr 2 (1.04.1987): 315–19. http://dx.doi.org/10.1090/s0273-0979-1987-15533-9.
Pełny tekst źródłaSwishchuk, Anatoliy, i M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas". International Journal of Stochastic Analysis 2010 (19.12.2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Pełny tekst źródłaCrank, Keith N., i Prem S. Puri. "A method of approximating Markov jump processes". Advances in Applied Probability 20, nr 1 (marzec 1988): 33–58. http://dx.doi.org/10.2307/1427269.
Pełny tekst źródłaCrank, Keith N., i Prem S. Puri. "A method of approximating Markov jump processes". Advances in Applied Probability 20, nr 01 (marzec 1988): 33–58. http://dx.doi.org/10.1017/s0001867800017936.
Pełny tekst źródłaDeng, Chang-Song, René L. Schilling i Yan-Hong Song. "Subgeometric rates of convergence for Markov processes under subordination". Advances in Applied Probability 49, nr 1 (marzec 2017): 162–81. http://dx.doi.org/10.1017/apr.2016.83.
Pełny tekst źródłaRozprawy doktorskie na temat "Convergence of Markov processes"
Hahn, Léo. "Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.
Pełny tekst źródłaThis thesis investigates the long-time behavior of run-and-tumble particles (RTPs), a model for bacteria's moves and interactions in out-of-equilibrium statistical mechanics, using piecewise deterministic Markov processes (PDMPs). The motivation is to improve the particle-level understanding of active phenomena, in particular motility induced phase separation (MIPS). The invariant measure for two jamming RTPs on a 1D torus is determined for general tumbling and jamming, revealing two out-of-equilibrium universality classes. Furthermore, the dependence of the mixing time on model parameters is established using coupling techniques and the continuous PDMP model is rigorously linked to a known on-lattice model. In the case of two jamming RTPs on the real line interacting through an attractive potential, the invariant measure displays qualitative differences based on model parameters, reminiscent of shape transitions and universality classes. Sharp quantitative convergence bounds are again obtained through coupling techniques. Additionally, the explicit invariant measure of three jamming RTPs on the 1D torus is computed. Finally, hypocoercive convergence results are extended to RTPs, achieving sharp \( L^2 \) convergence rates in a general setting that also covers kinetic Langevin and sampling PDMPs
Pötzelberger, Klaus. "On the Approximation of finite Markov-exchangeable processes by mixtures of Markov Processes". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1991. http://epub.wu.ac.at/526/1/document.pdf.
Pełny tekst źródłaSeries: Forschungsberichte / Institut für Statistik
Drozdenko, Myroslav. "Weak Convergence of First-Rare-Event Times for Semi-Markov Processes". Doctoral thesis, Västerås : Mälardalen University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-394.
Pełny tekst źródłaYuen, Wai Kong. "Application of geometric bounds to convergence rates of Markov chains and Markov processes on R[superscript]n". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58619.pdf.
Pełny tekst źródłaKaijser, Thomas. "Convergence in distribution for filtering processes associated to Hidden Markov Models with densities". Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92590.
Pełny tekst źródłaLachaud, Béatrice. "Détection de la convergence de processus de Markov". Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00010473.
Pełny tekst źródłaFisher, Diana. "Convergence analysis of MCMC method in the study of genetic linkage with missing data". Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=568.
Pełny tekst źródłaWang, Xinyu. "Sur la convergence sous-exponentielle de processus de Markov". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00840858.
Pełny tekst źródłaBouguet, Florian. "Étude quantitative de processus de Markov déterministes par morceaux issus de la modélisation". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S040/document.
Pełny tekst źródłaThe purpose of this Ph.D. thesis is the study of piecewise deterministic Markov processes, which are often used for modeling many natural phenomena. Precisely, we shall focus on their long time behavior as well as their speed of convergence to equilibrium, whenever they possess a stationary probability measure. Providing sharp quantitative bounds for this speed of convergence is one of the main orientations of this manuscript, which will usually be done through coupling methods. We shall emphasize the link between Markov processes and mathematical fields of research where they may be of interest, such as partial differential equations. The last chapter of this thesis is devoted to the introduction of a unified approach to study the long time behavior of inhomogeneous Markov chains, which can provide functional limit theorems with the help of asymptotic pseudotrajectories
Chotard, Alexandre. "Markov chain Analysis of Evolution Strategies". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112230/document.
Pełny tekst źródłaIn this dissertation an analysis of Evolution Strategies (ESs) using the theory of Markov chains is conducted. Proofs of divergence or convergence of these algorithms are obtained, and tools to achieve such proofs are developed.ESs are so called "black-box" stochastic optimization algorithms, i.e. information on the function to be optimized are limited to the values it associates to points. In particular, gradients are unavailable. Proofs of convergence or divergence of these algorithms can be obtained through the analysis of Markov chains underlying these algorithms. The proofs of log-linear convergence and of divergence obtained in this thesis in the context of a linear function with or without constraint are essential components for the proofs of convergence of ESs on wide classes of functions.This dissertation first gives an introduction to Markov chain theory, then a state of the art on ESs and on black-box continuous optimization, and present already established links between ESs and Markov chains.The contributions of this thesis are then presented:o General mathematical tools that can be applied to a wider range of problems are developed. These tools allow to easily prove specific Markov chain properties (irreducibility, aperiodicity and the fact that compact sets are small sets for the Markov chain) on the Markov chains studied. Obtaining these properties without these tools is a ad hoc, tedious and technical process, that can be of very high difficulty.o Then different ESs are analyzed on different problems. We study a (1,\lambda)-ES using cumulative step-size adaptation on a linear function and prove the log-linear divergence of the step-size; we also study the variation of the logarithm of the step-size, from which we establish a necessary condition for the stability of the algorithm with respect to the dimension of the search space. Then we study an ES with constant step-size and with cumulative step-size adaptation on a linear function with a linear constraint, using resampling to handle unfeasible solutions. We prove that with constant step-size the algorithm diverges, while with cumulative step-size adaptation, depending on parameters of the problem and of the ES, the algorithm converges or diverges log-linearly. We then investigate the dependence of the convergence or divergence rate of the algorithm with parameters of the problem and of the ES. Finally we study an ES with a sampling distribution that can be non-Gaussian and with constant step-size on a linear function with a linear constraint. We give sufficient conditions on the sampling distribution for the algorithm to diverge. We also show that different covariance matrices for the sampling distribution correspond to a change of norm of the search space, and that this implies that adapting the covariance matrix of the sampling distribution may allow an ES with cumulative step-size adaptation to successfully diverge on a linear function with any linear constraint.Finally, these results are summed-up, discussed, and perspectives for future work are explored
Książki na temat "Convergence of Markov processes"
G, Kurtz Thomas, red. Markov processes: Characterization and convergence. New York: Wiley, 1986.
Znajdź pełny tekst źródłaRoberts, Gareth O. Convergence of slice sampler Markov chains. [Toronto: University of Toronto, 1997.
Znajdź pełny tekst źródłaBaxter, John Robert. Rates of convergence for everywhere-positive markov chains. [Toronto, Ont.]: University of Toronto, Dept. of Statistics, 1994.
Znajdź pełny tekst źródłaRoberts, Gareth O. Quantitative bounds for convergence rates of continuous time Markov processes. [Toronto]: University of Toronto, Dept. of Statistics, 1996.
Znajdź pełny tekst źródłaYuen, Wai Kong. Applications of Cheeger's constant to the convergence rate of Markov chains on Rn. Toronto: University of Toronto, Dept. of Statistics, 1997.
Znajdź pełny tekst źródłaRoberts, Gareth O. On convergence rates of Gibbs samplers for uniform distributions. [Toronto: University of Toronto, 1997.
Znajdź pełny tekst źródłaCowles, Mary Kathryn. Possible biases induced by MCMC convergence diagnostics. Toronto: University of Toronto, Dept. of Statistics, 1997.
Znajdź pełny tekst źródłaCowles, Mary Kathryn. A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. [Toronto]: University of Toronto, Dept. of Statistics, 1996.
Znajdź pełny tekst źródłaWirsching, Günther J. The dynamical system generated by the 3n + 1 function. Berlin: Springer, 1998.
Znajdź pełny tekst źródłaPetrone, Sonia. A note on convergence rates of Gibbs sampling for nonparametric mixtures. Toronto: University of Toronto, Dept. of Statistics, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Convergence of Markov processes"
Zhang, Hanjun, Qixiang Mei, Xiang Lin i Zhenting Hou. "Convergence Property of Standard Transition Functions". W Markov Processes and Controlled Markov Chains, 57–67. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_4.
Pełny tekst źródłaAltman, Eitan. "Convergence of discounted constrained MDPs". W Constrained Markov Decision Processes, 193–98. Boca Raton: Routledge, 2021. http://dx.doi.org/10.1201/9781315140223-17.
Pełny tekst źródłaAltman, Eitan. "Convergence as the horizon tends to infinity". W Constrained Markov Decision Processes, 199–203. Boca Raton: Routledge, 2021. http://dx.doi.org/10.1201/9781315140223-18.
Pełny tekst źródłaKersting, G., i F. C. Klebaner. "Explosions in Markov Processes and Submartingale Convergence." W Athens Conference on Applied Probability and Time Series Analysis, 127–36. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0749-8_9.
Pełny tekst źródłaCai, Yuzhi. "How Rates of Convergence for Gibbs Fields Depend on the Interaction and the Kind of Scanning Used". W Markov Processes and Controlled Markov Chains, 489–98. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_31.
Pełny tekst źródłaBernou, Armand. "On Subexponential Convergence to Equilibrium of Markov Processes". W Lecture Notes in Mathematics, 143–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96409-2_5.
Pełny tekst źródłaPop-Stojanovic, Z. R. "Convergence in Energy and the Sector Condition for Markov Processes". W Seminar on Stochastic Processes, 1984, 165–72. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4684-6745-1_10.
Pełny tekst źródłaFeng, Jin, i Thomas Kurtz. "Large deviations for Markov processes and nonlinear semigroup convergence". W Mathematical Surveys and Monographs, 79–96. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/131/05.
Pełny tekst źródłaNegoro, Akira, i Masaaki Tsuchiya. "Convergence and uniqueness theorems for markov processes associated with Lévy operators". W Lecture Notes in Mathematics, 348–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078492.
Pełny tekst źródłaZverkina, Galina. "Ergodicity and Polynomial Convergence Rate of Generalized Markov Modulated Poisson Processes". W Communications in Computer and Information Science, 367–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66242-4_29.
Pełny tekst źródłaStreszczenia konferencji na temat "Convergence of Markov processes"
Majeed, Sultan Javed, i Marcus Hutter. "On Q-learning Convergence for Non-Markov Decision Processes". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/353.
Pełny tekst źródłaAmiri, Mohsen, i Sindri Magnússon. "On the Convergence of TD-Learning on Markov Reward Processes with Hidden States". W 2024 European Control Conference (ECC). IEEE, 2024. http://dx.doi.org/10.23919/ecc64448.2024.10591108.
Pełny tekst źródłaDing, Dongsheng, Kaiqing Zhang, Tamer Basar i Mihailo R. Jovanovic. "Convergence and optimality of policy gradient primal-dual method for constrained Markov decision processes". W 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867805.
Pełny tekst źródłaShi, Chongyang, Yuheng Bu i Jie Fu. "Information-Theoretic Opacity-Enforcement in Markov Decision Processes". W Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/749.
Pełny tekst źródłaFerreira Salvador, Paulo J., i Rui J. M. T. Valadas. "Framework based on Markov modulated Poisson processes for modeling traffic with long-range dependence". W ITCom 2001: International Symposium on the Convergence of IT and Communications, redaktorzy Robert D. van der Mei i Frank Huebner-Szabo de Bucs. SPIE, 2001. http://dx.doi.org/10.1117/12.434317.
Pełny tekst źródłaTakagi, Hideaki, Muneo Kitajima, Tetsuo Yamamoto i Yongbing Zhang. "Search process evaluation for a hierarchical menu system by Markov chains". W ITCom 2001: International Symposium on the Convergence of IT and Communications, redaktorzy Robert D. van der Mei i Frank Huebner-Szabo de Bucs. SPIE, 2001. http://dx.doi.org/10.1117/12.434312.
Pełny tekst źródłaHongbin Liang, Lin X. Cai, Hangguan Shan, Xuemin Shen i Daiyuan Peng. "Adaptive resource allocation for media services based on semi-Markov decision process". W 2010 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2010. http://dx.doi.org/10.1109/ictc.2010.5674663.
Pełny tekst źródłaTayeb, Shahab, Miresmaeil Mirnabibaboli i Shahram Latifi. "Load Balancing in WSNs using a Novel Markov Decision Process Based Routing Algorithm". W 2016 6th International Conference on IT Convergence and Security (ICITCS). IEEE, 2016. http://dx.doi.org/10.1109/icitcs.2016.7740350.
Pełny tekst źródłaChanron, Vincent, i Kemper Lewis. "A Study of Convergence in Decentralized Design". W ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/dac-48782.
Pełny tekst źródłaKuznetsova, Natalia, i Zhanna Pisarenko. "Financial convergence at the world financial market: pension funds and insurance entities prospects: case of China, EU, USA". W Contemporary Issues in Business, Management and Economics Engineering. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/cibmee.2019.037.
Pełny tekst źródłaRaporty organizacyjne na temat "Convergence of Markov processes"
Adler, Robert J., Stamatis Gambanis i Gennady Samorodnitsky. On Stable Markov Processes. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1987. http://dx.doi.org/10.21236/ada192892.
Pełny tekst źródłaAthreya, Krishna B., Hani Doss i Jayaram Sethuraman. A Proof of Convergence of the Markov Chain Simulation Method. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1992. http://dx.doi.org/10.21236/ada255456.
Pełny tekst źródłaAbdel-Hameed, M. Markovian Shock Models, Deterioration Processes, Stratified Markov Processes Replacement Policies. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1985. http://dx.doi.org/10.21236/ada174646.
Pełny tekst źródłaNewell, Alan. Markovian Shock Models, Deterioration Processes, Stratified Markov Processes and Replacement Policies. Fort Belvoir, VA: Defense Technical Information Center, maj 1986. http://dx.doi.org/10.21236/ada174995.
Pełny tekst źródłaCinlar, E. Markov Processes Applied to Control, Reliability and Replacement. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1989. http://dx.doi.org/10.21236/ada208634.
Pełny tekst źródłaRohlicek, J. R., i A. S. Willsky. Structural Decomposition of Multiple Time Scale Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, październik 1987. http://dx.doi.org/10.21236/ada189739.
Pełny tekst źródłaSerfozo, Richard F. Poisson Functionals of Markov Processes and Queueing Networks. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1987. http://dx.doi.org/10.21236/ada191217.
Pełny tekst źródłaSerfozo, R. F. Poisson Functionals of Markov Processes and Queueing Networks,. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1987. http://dx.doi.org/10.21236/ada194289.
Pełny tekst źródłaDraper, Bruce A., i J. Ross Beveridge. Learning to Populate Geospatial Databases via Markov Processes. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1999. http://dx.doi.org/10.21236/ada374536.
Pełny tekst źródłaSethuraman, Jayaram. Easily Verifiable Conditions for the Convergence of the Markov Chain Monte Carlo Method. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1995. http://dx.doi.org/10.21236/ada308874.
Pełny tekst źródła