Gotowa bibliografia na temat „Control of modern power system”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Control of modern power system”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Control of modern power system"
Alexandridis, Antonio T. "Modern Power System Dynamics, Stability and Control". Energies 13, nr 15 (24.07.2020): 3814. http://dx.doi.org/10.3390/en13153814.
Pełny tekst źródłaSharma, Dushyant, i Sukumar Mishra. "Power system frequency stabiliser for modern power systems". IET Generation, Transmission & Distribution 12, nr 9 (15.05.2018): 1961–69. http://dx.doi.org/10.1049/iet-gtd.2017.1295.
Pełny tekst źródłaLutz, E., i J. Martinaud. "A Modern Data Base Management System in Power System Control". IFAC Proceedings Volumes 18, nr 7 (lipiec 1985): 293–98. http://dx.doi.org/10.1016/s1474-6670(17)60448-8.
Pełny tekst źródłaShah, Syed Afzal. "Active Power Control In Modern Power System Through Demand Side Response". International Journal of Engineering Works 06, nr 12 (31.12.2019): 521–24. http://dx.doi.org/10.34259/ijew.19.612521524.
Pełny tekst źródłaBasit, Abdul, Tanvir Ahmad, Asfand Yar Ali, Kaleem Ullah, Gussan Mufti i Anca Daniela Hansen. "Flexible Modern Power System: Real-Time Power Balancing through Load and Wind Power". Energies 12, nr 9 (6.05.2019): 1710. http://dx.doi.org/10.3390/en12091710.
Pełny tekst źródłaChiflidzhanova-Hubenova, Zoya. "Modern aspects of the development of information and control system in energetics". Journal scientific and applied research 1, nr 1 (3.03.2012): 58–66. http://dx.doi.org/10.46687/jsar.v1i1.18.
Pełny tekst źródłaBodenstein, Max, Ingo Liere-Netheler, Frank Schuldt, Karsten von Maydell, Alexander K. Hartmann i Carsten Agert. "Optimized Power Flow Control to Minimize Congestion in a Modern Power System". Energies 16, nr 12 (8.06.2023): 4594. http://dx.doi.org/10.3390/en16124594.
Pełny tekst źródłaUllah, Kaleem, Abdul Basit, Zahid Ullah, Fahad R. Albogamy i Ghulam Hafeez. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles". Energies 15, nr 5 (27.02.2022): 1771. http://dx.doi.org/10.3390/en15051771.
Pełny tekst źródłaO A, Ezechukwu. "Application of Comparators in Modern Power System Protection and Control". IOSR Journal of Electrical and Electronics Engineering 8, nr 3 (2013): 58–63. http://dx.doi.org/10.9790/1676-0835863.
Pełny tekst źródłaUllah, Kaleem, Abdul Basit, Zahid Ullah, Sheraz Aslam i Herodotos Herodotou. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview". Energies 14, nr 9 (22.04.2021): 2376. http://dx.doi.org/10.3390/en14092376.
Pełny tekst źródłaRozprawy doktorskie na temat "Control of modern power system"
Hernandez, Michael. "Applications of modern control in power electronics". Paris 11, 2010. http://www.theses.fr/2010PA112161.
Pełny tekst źródłaIn the first part, this dissertation continues with the framework for analysis and design of (possibly nonlinear) power factor (PF) compensators for electrical systems operating in non-sinusoidal (but periodic) regimes with nonlinear loads. In particular, under the standard assumption that the generator is a voltage source with no impedance, we characterized all nonlinear loads whose PF is improved with a given nonlinear compensator. And this framework is used to study the problem of passive PF compensation of a classical half-bridge controlled rectifier. Given the “phase advance” operation of the rectifier it is expected that capacitive compensation improves PF, it is however less obvious that this can also be achieved (under some suitable conditions) with inductors. In the second part, A methodology to design linear proportional-integral (PI) controllers used in power converter applications and ensuring asymptotic stability was proposed. The technique relied on the basic fact that if an affine system can be rendered passive with a constant control, then it is stabilizable with a PL A structural condition was imposed then on the power converter to satisfy the former property with a passive output generated as a linear combination of the states. This condition is technical and has no clear physical interpretation. This result is extended in three directions : first, the aforementioned condition is removed ; second, a larger class of converters (with switching external sources) is considered ; third, the load resistance is assumed unknown and an adaptive PI controller (with three different estimators) is proposed. The methodology is applied to the problem of power factor compensation of a 3-phase. Voltage source rectifier, with simulation results proposed. Also, a stable adaptive PI is designed for the output voltage regulation of a quadratic boost converter showing the performance by means of experimental result. In the third part some controllers based on the concept of charge control for a converter used in an application of power factor correction are shown. The converter is composed by the interleaved connection of two or more boost converters connected to the grid by means of a non controlled diode rectifier. Charge control represents a cheap solution to guarantee current sharing among the different converters involved, and is normally used in combination with other controllers. The two controllers are first designed to guarantee the power factor close to one with regulated DC voltage, to which charge control is added to distribute equal current among the converters. Finally, a simplification with similar performance is presented that eliminates the use of current sensors, except for the current transformers required to implement the charge control, experimental results complete this part. The fourth part presents the implementation and programming of a method to track the maximum power point (MPP) in photovoltaic (PV) applications. This operation point is of special interest as it is required to extract the maximum power available from the photovoltaic arrays
Dong, Zhao Yang. "Advanced methods for small signal stability analysis and control in modern power systems". Phd thesis, School of Electrical and Information Engineering, Graduate School of Engineering, 1998. http://hdl.handle.net/2123/6416.
Pełny tekst źródłaAnderson, Sharon Lee. "Reduced order power system models for transient stability studies". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09052009-040743/.
Pełny tekst źródłaBarik, Tapas Kumar. "Modern Adaptive Protection and Control Techniques for Enhancing Distribution Grid Resiliency". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103644.
Pełny tekst źródłaDoctor of Philosophy
With widespread integration of inverter-based distributed energy resources (DERs) in the distribution grid, the conventional protection and control schemes no longer hold valid. The necessity of an adaptive protection scheme increases as the DER penetration in the system increases. Apart from this, changes in system topology and variability in DER generation, also change the fault current availability in the system in real-time. Hence, the protection schemes should be able to adapt to these variations and modify their settings for proper selectivity and sensitivity towards faults in the system, especially in systems with high penetration of DERs. These protection schemes need to be modified in order to properly identify and isolate faults in the network as well as correctly identify Loss of Mains (LOM) or islanding phenomenon. Special attention is needed to plan the next course of action after the islanding occurrence. Additionally, the protective devices in distribution system should be utilized to their maximum capability to create an adaptive and smart protection system. This document elaborately explains the research work pertaining to these areas.
Pourbeik, Pouyan. "Design and coordination of stabilisers for generators and FACTS devices in multimachine power systems /". Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09php877.pdf.
Pełny tekst źródłaRINALDI, GIANMARIO. "Local and Wide-Area Sliding Mode State Observation, Fault Reconstruction and Control with Application to Modern Power Systems". Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1326211.
Pełny tekst źródłaDu, Zhaobin, i 杜兆斌. "Area COI-based slow frequency dynamics modeling, analysis and emergency control for interconnected power systems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4175783X.
Pełny tekst źródłaЗолотова, Світлана Григорівна, Светлана Григорьевна Золотова, Svitlana Hryhorivna Zolotova i L. Skubak. "System control in modern technology". Thesis, Видавництво СумДУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/16031.
Pełny tekst źródłaManansala, Edgardo Celestino. "Adaptive power system control". Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54391.
Pełny tekst źródłaPh. D.
Hecker, Rogelio Lorenzo. "Power feedback control in cylindrical grinding process". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16619.
Pełny tekst źródłaKsiążki na temat "Control of modern power system"
Singh, Arun Kumar, i Manoj Tripathy, red. Control Applications in Modern Power System. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8815-0.
Pełny tekst źródłaModern power system control and operation. Boston: Kluwer Academic Publishers, 1987.
Znajdź pełny tekst źródłaCrivat, Savulescu Savu, red. Real-time stability assessment in modern power system control centers. Hoboken, N.J: John Wiley & Sons, Inc., 2009.
Znajdź pełny tekst źródłaKumar, Jitendra, Manoj Tripathy i Premalata Jena, red. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0193-5.
Pełny tekst źródłaDebs, Atif S. Modern Power Systems Control and Operation. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0.
Pełny tekst źródłaMariani, E., i S. S. Murthy. Control of Modern Integrated Power Systems. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8.
Pełny tekst źródłaDebs, A. S. Modern power systems control and operation. Boston: Kluwer Academic Publishers, 1988.
Znajdź pełny tekst źródłaKumar, Jitendra, Manoj Tripathy i Premalata Jena, red. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7788-6.
Pełny tekst źródłaE, Mariani. Control of modern integrated power systems. London: Springer, 1997.
Znajdź pełny tekst źródłaDebs, Atif S. Modern Power Systems Control and Operation. Boston, MA: Springer US, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Control of modern power system"
Mariani, E., i S. S. Murthy. "System Control". W Control of Modern Integrated Power Systems, 57–121. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8_2.
Pełny tekst źródłaMariani, E., i S. S. Murthy. "Computer System for Power System Operation and Control". W Control of Modern Integrated Power Systems, 1–55. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8_1.
Pełny tekst źródłaSen, Himanshu Narendra, Ashish Srivastava, Mucha Vijay Reddy i Varsha Singh. "IoT-Integrated Voltage Monitoring System". W Control Applications in Modern Power System, 177–86. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_16.
Pełny tekst źródłaMohammadi, Ali, Farnaz Safdarian, Mahdi Mehrtash i Amin Kargarian. "A System of Systems Engineering Framework for Modern Power System Operation". W Studies in Systems, Decision and Control, 217–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98923-5_12.
Pełny tekst źródłaMariani, E., i S. S. Murthy. "System Security and Quality of Operation". W Control of Modern Integrated Power Systems, 161–77. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8_4.
Pełny tekst źródłaPancholi, Roopal, i Sunita Chahar. "Enhancement of Hybrid PV-Wind System by Ingenious Neural Network Technique Indeed Noble DVR System". W Control Applications in Modern Power System, 279–310. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_25.
Pełny tekst źródłaSharma, Akanksha, Geeta Kumari, H. P. Singh, R. K. Viral, S. K. Sinha i Naqui Anwer. "Design of Energy Management System for Hybrid Power Sources". W Control Applications in Modern Power System, 197–215. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_18.
Pełny tekst źródłaKumar, Abhishek, Durgesh Chandra Nautiyal i Prakash Dwivedi. "Closed Loop Control of Non-ideal Buck Converter with Type-III Compensator". W Control Applications in Modern Power System, 1–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_1.
Pełny tekst źródłaYadav, Arvind R., Jayendra Kumar, Roshan Kumar, Shivam Kumar, Priyanshi Singh i Rishabh Soni. "Real-Time Electric Vehicle Collision Avoidance System Under Foggy Environment Using Raspberry Pi Controller and Image Processing Algorithm". W Control Applications in Modern Power System, 111–18. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_10.
Pełny tekst źródłaSahu, Preeti Ranjan, Rajesh Kumar Lenka i Satyajit Panigrahy. "Modified Sine Cosine Algorithm Optimized Fractional-Order PD Type SSSC Controller Design". W Control Applications in Modern Power System, 119–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Control of modern power system"
Ritonja, Jozef. "Modern power system stabilizer approaches". W 2015 27th Chinese Control and Decision Conference (CCDC). IEEE, 2015. http://dx.doi.org/10.1109/ccdc.2015.7162311.
Pełny tekst źródłaIliescu, S. St, i Ioana Fagarasan. "Modern approaches in power system control". W 2008 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2008. http://dx.doi.org/10.1109/aqtr.2008.4588702.
Pełny tekst źródłaHUSEYNOV, ASAF M., i ORKHAN B. AZADKHANOV. "Development of intellectual information-measuring system for Azerbaijan power system regime reliability control". W 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9394977.
Pełny tekst źródłaTchorzewski, Jerzy, i Radoslaw Marlega. "Metaidentification of the Modern Polish Power Exchange Control System". W 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9394972.
Pełny tekst źródłaŠtefane, Matevž, i Darko Lovrec. "Modern control system for servo hydraulic linear drive". W International conference Fluid Power 2017. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-086-8.8.
Pełny tekst źródłaGaffney, Brian D. "Development of Modern Electronic Control Systems for Power Distribution". W 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26004.
Pełny tekst źródłaRassudov, Lev, Alecksey Anuchin, Fernando Briz i Igor Gulyaev. "System on Chip in modern motion control systems". W 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE, 2015. http://dx.doi.org/10.1109/rtucon.2015.7343159.
Pełny tekst źródłaKumari, C. H. Nagaraja, i K. Chandra Sekhar. "Power flow control using FACTS device in modern power system". W 2017 IEEE International Conference on Circuits and Systems (ICCS). IEEE, 2017. http://dx.doi.org/10.1109/iccs1.2017.8326024.
Pełny tekst źródłaMalinin, Grigoriy, i S. Yankevich. "LOGIC AUTOMATIC DRIVER CONTROL IN THE SYSTEM OF CONTROL OF POWERFUL POWER CONVERTERS". W CAD/EDA/SIMULATION IN MODERN ELECTRONICS 2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/conferencearticle_5e02821252ea43.36490574.
Pełny tekst źródłaDarab, Cosmin, i Antoniu Turcu. "Internal model control for MPPT of a solar PV system". W 2017 International Conference on Modern Power Systems (MPS). IEEE, 2017. http://dx.doi.org/10.1109/mps.2017.7974464.
Pełny tekst źródłaRaporty organizacyjne na temat "Control of modern power system"
Author, Not Given. Integrated control of next generation power system. Office of Scientific and Technical Information (OSTI), luty 2010. http://dx.doi.org/10.2172/1025118.
Pełny tekst źródłaYang, Yu, i Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, lipiec 2023. http://dx.doi.org/10.31979/mti.2023.2240.
Pełny tekst źródłaMathur, A., i C. Koch. Solar central receiver power plant control system concept. Office of Scientific and Technical Information (OSTI), lipiec 1988. http://dx.doi.org/10.2172/6914107.
Pełny tekst źródłaLittle, Charles, i David Biedenharn. Technical assessment of the Old, Mississippi, Atchafalaya, and Red (OMAR) Rivers : channel geometry analysis. Engineer Research and Development Center (U.S.), sierpień 2022. http://dx.doi.org/10.21079/11681/45147.
Pełny tekst źródłaDagle, J. E., D. W. Winiarski i M. K. Donnelly. End-use load control for power system dynamic stability enhancement. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/484515.
Pełny tekst źródłaKirby, B. J. Frequency Control Concerns in the North American Electric Power System. Office of Scientific and Technical Information (OSTI), marzec 2003. http://dx.doi.org/10.2172/885842.
Pełny tekst źródłaUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), czerwiec 2001. http://dx.doi.org/10.2172/785168.
Pełny tekst źródłaUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), styczeń 2001. http://dx.doi.org/10.2172/788930.
Pełny tekst źródłaUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), październik 2000. http://dx.doi.org/10.2172/789054.
Pełny tekst źródłaUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), grudzień 2001. http://dx.doi.org/10.2172/791497.
Pełny tekst źródła