Artykuły w czasopismach na temat „Constrained Reinforcement Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Constrained Reinforcement Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pankayaraj, Pathmanathan, i Pradeep Varakantham. "Constrained Reinforcement Learning in Hard Exploration Problems". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 12 (26.06.2023): 15055–63. http://dx.doi.org/10.1609/aaai.v37i12.26757.
Pełny tekst źródłaHasanzadeZonuzy, Aria, Archana Bura, Dileep Kalathil i Srinivas Shakkottai. "Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 9 (18.05.2021): 7667–74. http://dx.doi.org/10.1609/aaai.v35i9.16937.
Pełny tekst źródłaDai, Juntao, Jiaming Ji, Long Yang, Qian Zheng i Gang Pan. "Augmented Proximal Policy Optimization for Safe Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7288–95. http://dx.doi.org/10.1609/aaai.v37i6.25888.
Pełny tekst źródłaBhatia, Abhinav, Pradeep Varakantham i Akshat Kumar. "Resource Constrained Deep Reinforcement Learning". Proceedings of the International Conference on Automated Planning and Scheduling 29 (25.05.2021): 610–20. http://dx.doi.org/10.1609/icaps.v29i1.3528.
Pełny tekst źródłaYang, Qisong, Thiago D. Simão, Simon H. Tindemans i Matthijs T. J. Spaan. "WCSAC: Worst-Case Soft Actor Critic for Safety-Constrained Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 12 (18.05.2021): 10639–46. http://dx.doi.org/10.1609/aaai.v35i12.17272.
Pełny tekst źródłaZhou, Zixian, Mengda Huang, Feiyang Pan, Jia He, Xiang Ao, Dandan Tu i Qing He. "Gradient-Adaptive Pareto Optimization for Constrained Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 9 (26.06.2023): 11443–51. http://dx.doi.org/10.1609/aaai.v37i9.26353.
Pełny tekst źródłaHe, Tairan, Weiye Zhao i Changliu Liu. "AutoCost: Evolving Intrinsic Cost for Zero-Violation Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 12 (26.06.2023): 14847–55. http://dx.doi.org/10.1609/aaai.v37i12.26734.
Pełny tekst źródłaYang, Zhaoxing, Haiming Jin, Rong Ding, Haoyi You, Guiyun Fan, Xinbing Wang i Chenghu Zhou. "DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 9 (26.06.2023): 10861–70. http://dx.doi.org/10.1609/aaai.v37i9.26288.
Pełny tekst źródłaMartins, Miguel S. E., Joaquim L. Viegas, Tiago Coito, Bernardo Marreiros Firme, João M. C. Sousa, João Figueiredo i Susana M. Vieira. "Reinforcement Learning for Dual-Resource Constrained Scheduling". IFAC-PapersOnLine 53, nr 2 (2020): 10810–15. http://dx.doi.org/10.1016/j.ifacol.2020.12.2866.
Pełny tekst źródłaGuenter, Florent, Micha Hersch, Sylvain Calinon i Aude Billard. "Reinforcement learning for imitating constrained reaching movements". Advanced Robotics 21, nr 13 (1.01.2007): 1521–44. http://dx.doi.org/10.1163/156855307782148550.
Pełny tekst źródłaChung, Jen Jen, Nicholas R. J. Lawrance i Salah Sukkarieh. "Learning to soar: Resource-constrained exploration in reinforcement learning". International Journal of Robotics Research 34, nr 2 (16.12.2014): 158–72. http://dx.doi.org/10.1177/0278364914553683.
Pełny tekst źródłaBai, Qinbo, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel i Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 4 (28.06.2022): 3682–89. http://dx.doi.org/10.1609/aaai.v36i4.20281.
Pełny tekst źródłaBai, Qinbo, Amrit Singh Bedi i Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 6737–44. http://dx.doi.org/10.1609/aaai.v37i6.25826.
Pełny tekst źródłaZhao, Hang, Qijin She, Chenyang Zhu, Yin Yang i Kai Xu. "Online 3D Bin Packing with Constrained Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 741–49. http://dx.doi.org/10.1609/aaai.v35i1.16155.
Pełny tekst źródłaPetsagkourakis, P., I. O. Sandoval, E. Bradford, D. Zhang i E. A. del Rio-Chanona. "Constrained Reinforcement Learning for Dynamic Optimization under Uncertainty". IFAC-PapersOnLine 53, nr 2 (2020): 11264–70. http://dx.doi.org/10.1016/j.ifacol.2020.12.361.
Pełny tekst źródłaPan, Elton, Panagiotis Petsagkourakis, Max Mowbray, Dongda Zhang i Ehecatl Antonio del Rio-Chanona. "Constrained model-free reinforcement learning for process optimization". Computers & Chemical Engineering 154 (listopad 2021): 107462. http://dx.doi.org/10.1016/j.compchemeng.2021.107462.
Pełny tekst źródłaGiuseppi, Alessandro, i Antonio Pietrabissa. "Chance-Constrained Control With Lexicographic Deep Reinforcement Learning". IEEE Control Systems Letters 4, nr 3 (lipiec 2020): 755–60. http://dx.doi.org/10.1109/lcsys.2020.2979635.
Pełny tekst źródłaGe, Yangyang, Fei Zhu, Wei Huang, Peiyao Zhao i Quan Liu. "Multi-agent cooperation Q-learning algorithm based on constrained Markov Game". Computer Science and Information Systems 17, nr 2 (2020): 647–64. http://dx.doi.org/10.2298/csis191220009g.
Pełny tekst źródłaFachantidis, Anestis, Matthew Taylor i Ioannis Vlahavas. "Learning to Teach Reinforcement Learning Agents". Machine Learning and Knowledge Extraction 1, nr 1 (6.12.2017): 21–42. http://dx.doi.org/10.3390/make1010002.
Pełny tekst źródłaXu, Yizhen, Zhengyang Zhao, Peng Cheng, Zhuo Chen, Ming Ding, Branka Vucetic i Yonghui Li. "Constrained Reinforcement Learning for Resource Allocation in Network Slicing". IEEE Communications Letters 25, nr 5 (maj 2021): 1554–58. http://dx.doi.org/10.1109/lcomm.2021.3053612.
Pełny tekst źródłaMowbray, M., P. Petsagkourakis, E. A. del Rio-Chanona i D. Zhang. "Safe chance constrained reinforcement learning for batch process control". Computers & Chemical Engineering 157 (styczeń 2022): 107630. http://dx.doi.org/10.1016/j.compchemeng.2021.107630.
Pełny tekst źródłaPoznyak, A. S., i K. Najim. "Learning through reinforcement for N-person repeated constrained games". IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 32, nr 6 (grudzień 2002): 759–71. http://dx.doi.org/10.1109/tsmcb.2002.1049610.
Pełny tekst źródłaTsai, Ya-Yen, Bo Xiao, Edward Johns i Guang-Zhong Yang. "Constrained-Space Optimization and Reinforcement Learning for Complex Tasks". IEEE Robotics and Automation Letters 5, nr 2 (kwiecień 2020): 683–90. http://dx.doi.org/10.1109/lra.2020.2965392.
Pełny tekst źródłaGao, Yuanqi, Wei Wang, Jie Shi i Nanpeng Yu. "Batch-Constrained Reinforcement Learning for Dynamic Distribution Network Reconfiguration". IEEE Transactions on Smart Grid 11, nr 6 (listopad 2020): 5357–69. http://dx.doi.org/10.1109/tsg.2020.3005270.
Pełny tekst źródłaLin, Wei-Song, i Chen-Hong Zheng. "Constrained adaptive optimal control using a reinforcement learning agent". Automatica 48, nr 10 (październik 2012): 2614–19. http://dx.doi.org/10.1016/j.automatica.2012.06.064.
Pełny tekst źródłaHu, Zhenzhen, i Wenyin Gong. "Constrained evolutionary optimization based on reinforcement learning using the objective function and constraints". Knowledge-Based Systems 237 (luty 2022): 107731. http://dx.doi.org/10.1016/j.knosys.2021.107731.
Pełny tekst źródłaGeibel, P., i F. Wysotzki. "Risk-Sensitive Reinforcement Learning Applied to Control under Constraints". Journal of Artificial Intelligence Research 24 (1.07.2005): 81–108. http://dx.doi.org/10.1613/jair.1666.
Pełny tekst źródłaSzwarcfiter, Claudio, Yale T. Herer i Avraham Shtub. "Balancing Project Schedule, Cost, and Value under Uncertainty: A Reinforcement Learning Approach". Algorithms 16, nr 8 (21.08.2023): 395. http://dx.doi.org/10.3390/a16080395.
Pełny tekst źródłaQin, Chunbin, Yinliang Wu, Jishi Zhang i Tianzeng Zhu. "Reinforcement Learning-Based Decentralized Safety Control for Constrained Interconnected Nonlinear Safety-Critical Systems". Entropy 25, nr 8 (2.08.2023): 1158. http://dx.doi.org/10.3390/e25081158.
Pełny tekst źródłaDing, Yuhao, i Javad Lavaei. "Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7396–404. http://dx.doi.org/10.1609/aaai.v37i6.25900.
Pełny tekst źródłaFu, Yanbo, Wenjie Zhao i Liu Liu. "Safe Reinforcement Learning for Transition Control of Ducted-Fan UAVs". Drones 7, nr 5 (22.05.2023): 332. http://dx.doi.org/10.3390/drones7050332.
Pełny tekst źródłaWei, Honghao, Xin Liu i Lei Ying. "A Provably-Efficient Model-Free Algorithm for Infinite-Horizon Average-Reward Constrained Markov Decision Processes". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 4 (28.06.2022): 3868–76. http://dx.doi.org/10.1609/aaai.v36i4.20302.
Pełny tekst źródłaQi, Qi, Wenbin Lin, Boyang Guo, Jinshan Chen, Chaoping Deng, Guodong Lin, Xin Sun i Youjia Chen. "Augmented Lagrangian-Based Reinforcement Learning for Network Slicing in IIoT". Electronics 11, nr 20 (19.10.2022): 3385. http://dx.doi.org/10.3390/electronics11203385.
Pełny tekst źródłaPocius, Rey, Lawrence Neal i Alan Fern. "Strategic Tasks for Explainable Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 10007–8. http://dx.doi.org/10.1609/aaai.v33i01.330110007.
Pełny tekst źródłaDinu, Alexandru, i Petre Lucian Ogrutan. "Reinforcement Learning Made Affordable for Hardware Verification Engineers". Micromachines 13, nr 11 (1.11.2022): 1887. http://dx.doi.org/10.3390/mi13111887.
Pełny tekst źródłaBrosowsky, Mathis, Florian Keck, Olaf Dünkel i Marius Zöllner. "Sample-Specific Output Constraints for Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 8 (18.05.2021): 6812–21. http://dx.doi.org/10.1609/aaai.v35i8.16841.
Pełny tekst źródłaParsonson, Christopher W. F., Alexandre Laterre i Thomas D. Barrett. "Reinforcement Learning for Branch-and-Bound Optimisation Using Retrospective Trajectories". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 4 (26.06.2023): 4061–69. http://dx.doi.org/10.1609/aaai.v37i4.25521.
Pełny tekst źródłaBrázdil, Tomáš, Krishnendu Chatterjee, Petr Novotný i Jiří Vahala. "Reinforcement Learning of Risk-Constrained Policies in Markov Decision Processes". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 06 (3.04.2020): 9794–801. http://dx.doi.org/10.1609/aaai.v34i06.6531.
Pełny tekst źródłaZhang, Hongchang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, Guanwen Zhang i Xiangyang Ji. "State Deviation Correction for Offline Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 8 (28.06.2022): 9022–30. http://dx.doi.org/10.1609/aaai.v36i8.20886.
Pełny tekst źródłaBai, Fengshuo, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang i Bo Xu. "PiCor: Multi-Task Deep Reinforcement Learning with Policy Correction". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 6728–36. http://dx.doi.org/10.1609/aaai.v37i6.25825.
Pełny tekst źródłaLee, Xian Yeow, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde i Soumik Sarkar. "Spatiotemporally Constrained Action Space Attacks on Deep Reinforcement Learning Agents". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 4577–84. http://dx.doi.org/10.1609/aaai.v34i04.5887.
Pełny tekst źródłaCostero, Luis, Arman Iranfar, Marina Zapater, Francisco D. Igual, Katzalin Olcoz i David Atienza. "Resource Management for Power-Constrained HEVC Transcoding Using Reinforcement Learning". IEEE Transactions on Parallel and Distributed Systems 31, nr 12 (1.12.2020): 2834–50. http://dx.doi.org/10.1109/tpds.2020.3004735.
Pełny tekst źródłaUchibe, Eiji, i Kenji Doya. "Finding intrinsic rewards by embodied evolution and constrained reinforcement learning". Neural Networks 21, nr 10 (grudzień 2008): 1447–55. http://dx.doi.org/10.1016/j.neunet.2008.09.013.
Pełny tekst źródłaLi, Hepeng, Zhiqiang Wan i Haibo He. "Constrained EV Charging Scheduling Based on Safe Deep Reinforcement Learning". IEEE Transactions on Smart Grid 11, nr 3 (maj 2020): 2427–39. http://dx.doi.org/10.1109/tsg.2019.2955437.
Pełny tekst źródłaWang, Huiwei, Tingwen Huang, Xiaofeng Liao, Haitham Abu-Rub i Guo Chen. "Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information". IEEE Transactions on Cybernetics 47, nr 10 (październik 2017): 3404–16. http://dx.doi.org/10.1109/tcyb.2016.2539300.
Pełny tekst źródłaDong, Wenbo, Shaofan Liu i Shiliang Sun. "Safe batch constrained deep reinforcement learning with generative adversarial network". Information Sciences 634 (lipiec 2023): 259–70. http://dx.doi.org/10.1016/j.ins.2023.03.108.
Pełny tekst źródłaKorivand, Soroush, Nader Jalili i Jiaqi Gong. "Inertia-Constrained Reinforcement Learning to Enhance Human Motor Control Modeling". Sensors 23, nr 5 (1.03.2023): 2698. http://dx.doi.org/10.3390/s23052698.
Pełny tekst źródłaJing, Mingxuan, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang i Huaping Liu. "Reinforcement Learning from Imperfect Demonstrations under Soft Expert Guidance". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5109–16. http://dx.doi.org/10.1609/aaai.v34i04.5953.
Pełny tekst źródłaMa, Jing, So Hasegawa, Song-Ju Kim i Mikio Hasegawa. "A Reinforcement-Learning-Based Distributed Resource Selection Algorithm for Massive IoT". Applied Sciences 9, nr 18 (6.09.2019): 3730. http://dx.doi.org/10.3390/app9183730.
Pełny tekst źródłaDing, Zhenhuan, Xiaoge Huang i Zhao Liu. "Active Exploration by Chance-Constrained Optimization for Voltage Regulation with Reinforcement Learning". Energies 15, nr 2 (16.01.2022): 614. http://dx.doi.org/10.3390/en15020614.
Pełny tekst źródła