Spis treści
Gotowa bibliografia na temat „Constrained pseudorandom functions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Constrained pseudorandom functions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Constrained pseudorandom functions"
Kissel, Zachary A. "Key regression from constrained pseudorandom functions". Information Processing Letters 147 (lipiec 2019): 10–13. http://dx.doi.org/10.1016/j.ipl.2019.02.012.
Pełny tekst źródłaDatta, Pratish. "Constrained pseudorandom functions from functional encryption". Theoretical Computer Science 809 (luty 2020): 137–70. http://dx.doi.org/10.1016/j.tcs.2019.12.004.
Pełny tekst źródłaDatta, Pratish, Ratna Dutta i Sourav Mukhopadhyay. "Constrained Pseudorandom Functions for Turing Machines Revisited: How to Achieve Verifiability and Key Delegation". Algorithmica 81, nr 9 (17.05.2019): 3245–390. http://dx.doi.org/10.1007/s00453-019-00576-7.
Pełny tekst źródłaKietzmann, Peter, Thomas C. Schmidt i Matthias Wählisch. "A Guideline on Pseudorandom Number Generation (PRNG) in the IoT". ACM Computing Surveys 54, nr 6 (lipiec 2021): 1–38. http://dx.doi.org/10.1145/3453159.
Pełny tekst źródłaTontini, Fabio Caratori, Osvaldo Faggioni, Nicolò Beverini i Cosmo Carmisciano. "Gaussian envelope for 3D geomagnetic data inversion". GEOPHYSICS 68, nr 3 (maj 2003): 996–1007. http://dx.doi.org/10.1190/1.1581071.
Pełny tekst źródłaWatanabe, Yuhei, Hideki Yamamoto i Hirotaka Yoshida. "Lightweight Crypto Stack for TPMS Using Lesamnta-LW". Security and Communication Networks 2020 (24.09.2020): 1–12. http://dx.doi.org/10.1155/2020/5738215.
Pełny tekst źródłaLawnik, Marcin, Lazaros Moysis i Christos Volos. "A Family of 1D Chaotic Maps without Equilibria". Symmetry 15, nr 7 (27.06.2023): 1311. http://dx.doi.org/10.3390/sym15071311.
Pełny tekst źródłaLeander, Gregor, Thorben Moos, Amir Moradi i Shahram Rasoolzadeh. "The SPEEDY Family of Block Ciphers". IACR Transactions on Cryptographic Hardware and Embedded Systems, 11.08.2021, 510–45. http://dx.doi.org/10.46586/tches.v2021.i4.510-545.
Pełny tekst źródłaRozprawy doktorskie na temat "Constrained pseudorandom functions"
Riahinia, Mahshid. "Constrained Pseudorandom Functions : New Constructions and Connections with Secure Computation". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0022.
Pełny tekst źródłaPseudorandom functions (PRFs) were introduced in 1986 by Goldreich, Goldwasser, and Micali as efficient means of generating randomness and serve as essential tools in cryptography. These functions use a master secret key to map different inputs to pseudorandom outputs. Constrained pseudorandom functions (CPRFs), introduced in 2013, extend PRFs by additionally allowing the delegation of constrained keys that enable the evaluation of the function only on specific subsets of inputs. Notably, given a constrained key that evaluates the function on a subset of inputs, the output of a CPRF should remain pseudorandom on inputs outside of this subset. In this thesis, we establish links between CPRFs and two other cryptographic tools which were introduced in the context of secure computation: 1. We show how CPRFs can be constructed from homomorphic secret sharing (HSS) protocols. Homomorphic secret sharing protocols allow distributed computations over shares of a secret. We start by identifying two extensions of HSS protocols and show how they can be transformed into CPRFs generating constrained keys for subset of inputs that can be expressed via inner-product and NC1 predicates. Next, we observe that HSS protocols that already exist in the literature can be adapted to these new extensions. This leads to the discovery of five new CPRF constructions based on various standard hardness assumptions. 2.We show how CPRFs can be used to construct pseudorandom correlation functions (PCFs) for oblivious transfer (OT) correlations. PCFs for OT correlations enable two parties to generate OT-correlated pairs that can be used in fast secure computation protocols. Next, we instantiate our transformation by applying a slight modification to the well-known PRF construction of Naor and Reingold. We finally present a method for the non-interactive generation of evaluation keys for the latter instantiation which results in an efficient public-key PCF for OT correlations from standard assumptions
Części książek na temat "Constrained pseudorandom functions"
Banerjee, Abhishek, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak i Sophie Stevens. "Key-Homomorphic Constrained Pseudorandom Functions". W Theory of Cryptography, 31–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46497-7_2.
Pełny tekst źródłaHofheinz, Dennis, Akshay Kamath, Venkata Koppula i Brent Waters. "Adaptively Secure Constrained Pseudorandom Functions". W Financial Cryptography and Data Security, 357–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32101-7_22.
Pełny tekst źródłaBoneh, Dan, i Brent Waters. "Constrained Pseudorandom Functions and Their Applications". W Advances in Cryptology - ASIACRYPT 2013, 280–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42045-0_15.
Pełny tekst źródłaDeshpande, Apoorvaa, Venkata Koppula i Brent Waters. "Constrained Pseudorandom Functions for Unconstrained Inputs". W Advances in Cryptology – EUROCRYPT 2016, 124–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49896-5_5.
Pełny tekst źródłaBoneh, Dan, Sam Kim i David J. Wu. "Constrained Keys for Invertible Pseudorandom Functions". W Theory of Cryptography, 237–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70500-2_9.
Pełny tekst źródłaCouteau, Geoffroy, Pierre Meyer, Alain Passelègue i Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic Secret Sharing". W Advances in Cryptology – EUROCRYPT 2023, 194–224. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30620-4_7.
Pełny tekst źródłaDavidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada i Takashi Yamakawa. "Adaptively Secure Constrained Pseudorandom Functions in the Standard Model". W Advances in Cryptology – CRYPTO 2020, 559–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56784-2_19.
Pełny tekst źródłaDatta, Pratish, Ratna Dutta i Sourav Mukhopadhyay. "Constrained Pseudorandom Functions for Unconstrained Inputs Revisited: Achieving Verifiability and Key Delegation". W Lecture Notes in Computer Science, 463–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54388-7_16.
Pełny tekst źródłaDatta, Pratish. "Constrained (Verifiable) Pseudorandom Function from Functional Encryption". W Information Security Practice and Experience, 141–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99807-7_9.
Pełny tekst źródłaDodson, C. T. J. "Some Illustrations of Information Geometry in Biology and Physics". W Handbook of Research on Computational Science and Engineering, 287–315. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-61350-116-0.ch013.
Pełny tekst źródła