Artykuły w czasopismach na temat „CONSOLIDATION BEHAVIOR”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CONSOLIDATION BEHAVIOR”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pincus, HJ, A. Sridharan, K. Prakash i SR Asha. "Consolidation Behavior of Soils". Geotechnical Testing Journal 18, nr 1 (1995): 58. http://dx.doi.org/10.1520/gtj10122j.
Pełny tekst źródłaHuang, Jieqing, Xinyu Xie, Jifa Zhang, Jinzhu Li i Wenjun Wang. "Nonlinear Finite Strain Consolidation Analysis with Secondary Consolidation Behavior". Mathematical Problems in Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/979380.
Pełny tekst źródłaISOWAKI, Asuka, Makoto YAMAGUCHI, Shigeru TANAKA i Nobuaki KAWAI. "Shock Consolidation Behavior of Concrete". Proceedings of the Materials and Mechanics Conference 2019 (2019): OS1515. http://dx.doi.org/10.1299/jsmemm.2019.os1515.
Pełny tekst źródłaIttershagen, T., i A. Kwade. "Measurement of Anisotropic Consolidation Behavior". Particulate Science and Technology 29, nr 1 (24.01.2011): 79–88. http://dx.doi.org/10.1080/02726351.2010.510548.
Pełny tekst źródłaEl-sakhawy, Nagwa Ragab, i Ahmed Abd El_Latief. "BEHAVIOR OF PILES DURING SOIL CONSOLIDATION". ERJ. Engineering Research Journal 33, nr 4 (1.10.2010): 441–46. http://dx.doi.org/10.21608/erjm.2010.67344.
Pełny tekst źródłaKluge, Jonathan A., Nicholas C. Rosiello, Gary G. Leisk, David L. Kaplan i A. Luis Dorfmann. "The consolidation behavior of silk hydrogels". Journal of the Mechanical Behavior of Biomedical Materials 3, nr 3 (kwiecień 2010): 278–89. http://dx.doi.org/10.1016/j.jmbbm.2009.12.001.
Pełny tekst źródłaBergstrom, Lennart, Christopher H. Schilling i Ilhan A. Aksay. "Consolidation Behavior of Flocculated Alumina Suspensions". Journal of the American Ceramic Society 75, nr 12 (grudzień 1992): 3305–14. http://dx.doi.org/10.1111/j.1151-2916.1992.tb04426.x.
Pełny tekst źródłaLiu, Zhen, Wei Hu, Weihua Ming, Shenghua Xiong, Cuiying Zhou i Lihai Zhang. "Modeling consolidation of soft clay by developing a fractional differential constitutive model in conjunction with an intelligent displacement inversion method". PLOS ONE 17, nr 9 (30.09.2022): e0275034. http://dx.doi.org/10.1371/journal.pone.0275034.
Pełny tekst źródłaAbdulhadi, Naeem O., John T. Germaine i Andrew J. Whittle. "Stress-dependent behavior of saturated clay". Canadian Geotechnical Journal 49, nr 8 (sierpień 2012): 907–16. http://dx.doi.org/10.1139/t2012-057.
Pełny tekst źródłaAhmed, Mahmoud, Nicholas A. Beier i Heather Kaminsky. "A Comprehensive Review of Large Strain Consolidation Testing for Application in Oil Sands Mine Tailings". Mining 3, nr 1 (3.03.2023): 121–50. http://dx.doi.org/10.3390/mining3010008.
Pełny tekst źródłaYan, Zhen, Gang Li, Jinli Zhang i Rui Zhang. "Study on the Creep Behaviors of Interactive Marine-Terrestrial Deposit Soils". Advances in Civil Engineering 2019 (7.07.2019): 1–14. http://dx.doi.org/10.1155/2019/6042893.
Pełny tekst źródłaSuthaker, N. N., i J. D. Scott. "Consolidation Behavior of Oil Sand Fine Tailings". Journal American Society of Mining and Reclamation 1994, nr 4 (1994): 399–406. http://dx.doi.org/10.21000/jasmr94040399.
Pełny tekst źródłaAhmed, Syed Iftekhar, i Sumi Siddiqua. "A review on consolidation behavior of tailings". International Journal of Geotechnical Engineering 8, nr 1 (6.12.2013): 102–11. http://dx.doi.org/10.1179/1939787913y.0000000012.
Pełny tekst źródłaPetersen, DR, RE Link, PV Sivapullaiah i S. Savitha. "Consolidation Behavior of Bentonite in Electrolyte Solutions". Journal of Testing and Evaluation 28, nr 6 (2000): 519. http://dx.doi.org/10.1520/jte12144j.
Pełny tekst źródłaPetersen, DR, RE Link, NS Pandian i S. Balasubramonian. "Permeability and Consolidation Behavior of Fly Ashes". Journal of Testing and Evaluation 27, nr 5 (1999): 337. http://dx.doi.org/10.1520/jte12234j.
Pełny tekst źródłaNovich, Bruce E., i Dale H. Pvatt. "Consolidation Behavior of High-Performance Ceramic Suspensions". Journal of the American Ceramic Society 73, nr 2 (luty 1990): 207–12. http://dx.doi.org/10.1111/j.1151-2916.1990.tb06494.x.
Pełny tekst źródłaStone, K. J. L., M. F. Randolph, S. Toh i A. A. Sales. "Evaluation of Consolidation Behavior of Mine Tailings". Journal of Geotechnical Engineering 120, nr 3 (marzec 1994): 473–90. http://dx.doi.org/10.1061/(asce)0733-9410(1994)120:3(473).
Pełny tekst źródłaDavid Suits, L., TC Sheahan, TH Seah i S. Koslanant. "Anisotropic Consolidation Behavior of Soft Bangkok Clay". Geotechnical Testing Journal 26, nr 3 (2003): 10174. http://dx.doi.org/10.1520/gtj11300j.
Pełny tekst źródłaKim, J. S., Y. S. Kwon, D. V. Dudina, O. I. Lomovsky, M. A. Korchagin i V. I. Mali. "Nanocomposites TiB2-Cu: Consolidation and erosion behavior". Journal of Materials Science 40, nr 13 (lipiec 2005): 3491–95. http://dx.doi.org/10.1007/s10853-005-2854-2.
Pełny tekst źródłaBohnhoff, Gretchen L., i Charles D. Shackelford. "Consolidation Behavior of Polymerized Bentonite-Amended Backfills". Journal of Geotechnical and Geoenvironmental Engineering 140, nr 5 (maj 2014): 04013055. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0001079.
Pełny tekst źródłaOh, Seboong, Ki Hun Park, Oh Kyun Kwon, Woo Jung Chung i Kyung Joon Shin. "On the Hypothesis of Effective Stress in Consolidation and Strength for Unsaturated Soils". Applied Mechanics and Materials 256-259 (grudzień 2012): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.108.
Pełny tekst źródłaCao, Yupeng, Jian Yang, Guizhong Xu i Jianwen Xu. "Analysis of Large-Strain Consolidation Behavior of Soil with High Water Content in Consideration of Self-Weight". Advances in Civil Engineering 2018 (20.09.2018): 1–10. http://dx.doi.org/10.1155/2018/6240960.
Pełny tekst źródłaCramer, Catie, Kathryn Proudfoot i Theresa Ollivett. "Automated Feeding Behaviors Associated with Subclinical Respiratory Disease in Preweaned Dairy Calves". Animals 10, nr 6 (5.06.2020): 988. http://dx.doi.org/10.3390/ani10060988.
Pełny tekst źródłaKrishna, K. V. Manoj, i Shivendra. "EFFECT OF SOAK PIT ON THE CONSOLIDATION BEHAVIOR OF THREE ZONE SOIL IN KARNATAKA". International Journal of Research -GRANTHAALAYAH 5, nr 11 (30.11.2017): 60–69. http://dx.doi.org/10.29121/granthaalayah.v5.i11.2017.2329.
Pełny tekst źródłaDahl, Karina R., Jason T. DeJong, Ross W. Boulanger, Robert Pyke i Douglas Wahl. "Characterization of an alluvial silt and clay deposit for monotonic, cyclic, and post-cyclic behavior". Canadian Geotechnical Journal 51, nr 4 (kwiecień 2014): 432–40. http://dx.doi.org/10.1139/cgj-2013-0057.
Pełny tekst źródłaChandra, Siddharth, i Douglas Kammen. "Generating Reforms and Reforming Generations: Military Politics in Indonesia's Democratic Transition and Consolidation". World Politics 55, nr 1 (październik 2002): 96–136. http://dx.doi.org/10.1353/wp.2003.0001.
Pełny tekst źródłaCao, Yu Peng, Jian Wen Ding, Xia Bian, Feng Ji i Gui Zhong Xu. "Rapid Consolidation Behavior of Dredged Clays at High Water Content". Advanced Materials Research 368-373 (październik 2011): 2966–70. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.2966.
Pełny tekst źródłaSompie, Berty, Katsuhiko Arai i Akira Kita. "Dilatancy Behavior in Constant Strain Rate Consolidation Test". Jurnal Teknik Sipil 13, nr 2 (1.05.2010): 55. http://dx.doi.org/10.5614/jts.2006.13.2.1.
Pełny tekst źródłaLiu, Chaogang, Shosuke Toki i Kinya Miura. "Deformation Behavior of Sand under Cyclic Anisotropic Consolidation". Soils and Foundations 30, nr 1 (marzec 1990): 195–205. http://dx.doi.org/10.3208/sandf1972.30.195.
Pełny tekst źródłaAzam, Shahid, i Rashedul H. Chowdhury. "Swell–shrink–consolidation behavior of compacted expansive clays". International Journal of Geotechnical Engineering 7, nr 4 (październik 2013): 424–30. http://dx.doi.org/10.1179/1939787913y.0000000005.
Pełny tekst źródłaChaney, RC, KR Demars, A. Sridharan, K. Prakash i SR Asha. "Consolidation Behavior of Clayey Soils Under Radial Drainage". Geotechnical Testing Journal 19, nr 4 (1996): 421. http://dx.doi.org/10.1520/gtj10719j.
Pełny tekst źródłaPark, H., i K. T. Kim. "Consolidation behavior of SiC powder under cold compaction". Materials Science and Engineering: A 299, nr 1-2 (luty 2001): 116–24. http://dx.doi.org/10.1016/s0921-5093(00)01419-2.
Pełny tekst źródłaKim, Youngmoo. "Consolidation behavior and hardness of P/M molybdenum". Powder Technology 186, nr 3 (wrzesień 2008): 213–17. http://dx.doi.org/10.1016/j.powtec.2007.12.005.
Pełny tekst źródłaHorpibulsuk, Suksun, Avirut Chinkulkijniwat, Arnon Cholphatsorn, Jirayut Suebsuk i Martin D. Liu. "Consolidation behavior of soil–cement column improved ground". Computers and Geotechnics 43 (czerwiec 2012): 37–50. http://dx.doi.org/10.1016/j.compgeo.2012.02.003.
Pełny tekst źródłaThu, Trinh Minh, Harianto Rahardjo i Eng-Choon Leong. "Soil-water characteristic curve and consolidation behavior for a compacted silt". Canadian Geotechnical Journal 44, nr 3 (1.03.2007): 266–75. http://dx.doi.org/10.1139/t06-114.
Pełny tekst źródłaKim, Yun Tae, Ba-Phu Nguyen i Dae-Ho Yun. "Analysis of consolidation behavior of PVD-improved ground considering a varied discharge capacity". Engineering Computations 35, nr 3 (8.05.2018): 1183–202. http://dx.doi.org/10.1108/ec-06-2017-0199.
Pełny tekst źródłaUchaipichat, Anuchit. "Consolidation Behavior of Clay Supported by Soil-Cement Column". Key Engineering Materials 861 (wrzesień 2020): 452–57. http://dx.doi.org/10.4028/www.scientific.net/kem.861.452.
Pełny tekst źródłaEl-Kasaby, Elsayed Abdelfatah, Elnos Ali Eissa, Mohamed Farouk Ab-Elmeged i Ahmed Adel Abo-Shark. "Coefficient of Consolidation and Volume Change for 3-D Consolidation". European Journal of Engineering Research and Science 4, nr 5 (25.05.2019): 126–31. http://dx.doi.org/10.24018/ejers.2019.4.5.1344.
Pełny tekst źródłaEl-Kasaby, Elsayed Abdelfatah, Elnos Ali Eissa, Mohamed Farouk Ab-Elmeged i Ahmed Adel Abo-Shark. "Coefficient of Consolidation and Volume Change for 3-D Consolidation". European Journal of Engineering and Technology Research 4, nr 5 (25.05.2019): 126–31. http://dx.doi.org/10.24018/ejeng.2019.4.5.1344.
Pełny tekst źródłaBarbour, S. L., i D. G. Fredlund. "Mechanisms of osmotic flow and volume change in clay soils". Canadian Geotechnical Journal 26, nr 4 (1.11.1989): 551–62. http://dx.doi.org/10.1139/t89-068.
Pełny tekst źródłaAn, Jeongmin, Hyun-Jun Choi, Seokjae Lee i Jongmuk Won. "Sedimentation and Self-Weight Consolidation Characteristics of Illite and Kaolinite Suspension". Journal of the Korean Society of Hazard Mitigation 22, nr 4 (31.08.2022): 135–44. http://dx.doi.org/10.9798/kosham.2022.22.4.135.
Pełny tekst źródłaJiang, Z. B., R. Ishikura i N. Yasufuku. "Evaluation of settlement behavior of the improved ground by using floating type columns during consolidation". Lowland Technology International 17, nr 2 (2015): 59–72. http://dx.doi.org/10.14247/lti.17.2_59.
Pełny tekst źródłaSun, Jing, Xiao Ming Yuan i Mao Sheng Gong. "The Effect of Nonlinear Dynamic Shear Modulus under Anisotropic Consolidation on Response Spectrum of Soil Layer". Advanced Materials Research 243-249 (maj 2011): 2250–53. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.2250.
Pełny tekst źródłaChiasson, Matthew, i Jeremy Laliberté. "In situ measurement of vacuum consolidation of commingled thermoplastic composites using a non-contact displacement sensor". Journal of Reinforced Plastics and Composites 33, nr 22 (29.09.2014): 2046–63. http://dx.doi.org/10.1177/0731684414553282.
Pełny tekst źródłaJia, Jinbo, Yansen Wang i Yangguang Leng. "Unloading Creep Characteristics of Frozen Clay Subjected to Long-Term High-Pressure K0 Consolidation before Freezing". Advances in Civil Engineering 2019 (18.09.2019): 1–18. http://dx.doi.org/10.1155/2019/7192845.
Pełny tekst źródłaHuang, Minghua, Chang Lv, Suhua Zhou, Shuaikang Zhou i Jiatao Kang. "One-Dimensional Consolidation of Viscoelastic Soils Incorporating Caputo-Fabrizio Fractional Derivative". Applied Sciences 11, nr 3 (20.01.2021): 927. http://dx.doi.org/10.3390/app11030927.
Pełny tekst źródłaChai, J. C., N. Miura, H. H. Zhu i Yudhbir. "Compression and consolidation characteristics of structured natural clay". Canadian Geotechnical Journal 41, nr 6 (1.12.2004): 1250–58. http://dx.doi.org/10.1139/t04-056.
Pełny tekst źródłaZhang, Zhi Guo, Meng Xi Zhang i Xiao Xiao. "Prediction for Long-Term Deformation of Existing Tunnels Induced by Underground Excavation in Shanghai Subway Project". Applied Mechanics and Materials 353-356 (sierpień 2013): 1390–93. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.1390.
Pełny tekst źródłaNISHIE, Shunsaku, Lin WANG, Sadao KUTSUZAWA i Masayuki HYODO. "The K0 Consolidation Behavior and Undrained Shear Characteristics of Undisturbed Marine Clays During the Secondary Consolidation." Doboku Gakkai Ronbunshu, nr 708 (2002): 53–68. http://dx.doi.org/10.2208/jscej.2002.708_53.
Pełny tekst źródłaChen, H., W. Hu i G. Gottstein. "Finite-element analysis of the hot-pressing consolidation of continuous Al2O3 fibers-reinforced NiAl composites". International Journal of Materials Research 96, nr 7 (1.07.2005): 710–17. http://dx.doi.org/10.1515/ijmr-2005-0125.
Pełny tekst źródła