Gotowa bibliografia na temat „Connected components labeling (CCL)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Connected components labeling (CCL)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Connected components labeling (CCL)"
Putri, Audini Nifira, i I. Putu Gede Hendra Suputra. "Hijaiyah Letter Segmentation Using Connected Component Labeling Method". JELIKU (Jurnal Elektronik Ilmu Komputer Udayana) 9, nr 2 (24.11.2020): 249. http://dx.doi.org/10.24843/jlk.2020.v09.i02.p12.
Pełny tekst źródłaDharmajaya, Gede Putra, i I. Dewa Made Bayu Atmaja Darmawan. "Tempo Tracking on Guru Ding Dong Transcript using Connected Component Labeling (CCL) Method". JELIKU (Jurnal Elektronik Ilmu Komputer Udayana) 8, nr 2 (8.01.2020): 137. http://dx.doi.org/10.24843/jlk.2019.v08.i02.p05.
Pełny tekst źródłaAmmar, Maan, Muhammad Shamdeen, Mazen Kasedeh, Kinan Mansour i Waad Ammar. "Using Distance Measure based Classification in Automatic Extraction of Lungs Cancer Nodules for Computer Aided Diagnosis". Signal & Image Processing : An International Journal 12, nr 3 (30.06.2021): 25–43. http://dx.doi.org/10.5121/sipij.2021.12303.
Pełny tekst źródłaDung, Le, i Makoto Mizukawa. "Fast Hand Feature Extraction Based on Connected Component Labeling, Distance Transform and Hough Transform". Journal of Robotics and Mechatronics 21, nr 6 (20.12.2009): 726–38. http://dx.doi.org/10.20965/jrm.2009.p0726.
Pełny tekst źródłaSuriani, Uci, i Tri Basuki Kurniawan. "Comparing the Prediction of Numeric Patterns on Form C1 Using the K-Nearest Neighbors (K-NN) Method and a Combination of K-Nearest Neighbors (K-NN) with Connected Component Labeling (CCL)". Journal of Information Systems and Informatics 5, nr 4 (3.12.2023): 1569–80. http://dx.doi.org/10.51519/journalisi.v5i4.592.
Pełny tekst źródłaAissou, B., i A. Belhadj Aissa. "AN ADAPTED CONNECTED COMPONENT LABELING FOR CLUSTERING NON-PLANAR OBJECTS FROM AIRBORNE LIDAR POINT CLOUD". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (12.08.2020): 191–95. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-191-2020.
Pełny tekst źródłaKowalczyk, Marcin, Piotr Ciarach, Dominika Przewlocka-Rus, Hubert Szolc i Tomasz Kryjak. "Real-Time FPGA Implementation of Parallel Connected Component Labelling for a 4K Video Stream". Journal of Signal Processing Systems 93, nr 5 (1.04.2021): 481–98. http://dx.doi.org/10.1007/s11265-021-01636-4.
Pełny tekst źródłaTian, Yifei, Wei Song, Long Chen, Yunsick Sung, Jeonghoon Kwak i Su Sun. "A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming". Sensors 20, nr 8 (18.04.2020): 2309. http://dx.doi.org/10.3390/s20082309.
Pełny tekst źródłaRakhmadi. "Connected Component Labeling Using Components Neighbors-Scan Labeling Approach". Journal of Computer Science 6, nr 10 (1.10.2010): 1099–107. http://dx.doi.org/10.3844/jcssp.2010.1099.1107.
Pełny tekst źródłaAsano, Tetsuo, i Hiroshi Tanaka. "In-Place Algorithm for Connected Components Labeling". Journal of Pattern Recognition Research 5, nr 1 (2010): 10–22. http://dx.doi.org/10.13176/11.218.
Pełny tekst źródłaRozprawy doktorskie na temat "Connected components labeling (CCL)"
Sundström, Alex, i Victor Ähdel. "Is GPGPU CCL worth it? : A performance comparison between some GPU and CPU algorithms for solving connected components labeling on binary images". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186270.
Pełny tekst źródłaEtikettering av sammansatta komponenter (CCL) är ett traditionellt sekventiellt problem som är svårt att parallellisera. Denna rapport ämnar atttestaprestandanavattlösaCCLmedanvändningavmassivtparallell hårdvara genom metoden GPGPU. För att uppnå detta undersöktes och implementerades ett flertal CCL algoritmer i C++ och OpenCL Resultaten pekar på en förbättring upp till en faktor av 2, vilket är obetydligt när man också tar hänsyn till minnesöverföringen. Sammanfattningsvis så är det ej värt att utföra CCL med GPGPU om data även måste överföras till och från GPU.
Babilotte, Killian. "Étude d'endommagement sous choc en dynamique moléculaire par développement d'un algorithme d'analyse in-situ massivement parallèle". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP085.
Pełny tekst źródłaIn the perspective of the study of condensed matter under extreme conditions, many questions remain open in order to understand some phenomena, due to the difficulty of studying them experimentally. Depending on the phenomena studied, the lack of experimental data may prevent the modeling of these phenomena, or, when models do exist, it may prevent their calibration or settling which one to use. Molecular dynamics (MD) is the technique of choice for studying these phenomena, as it enables the response of a system to be simulated solely from the description of atomic interactions, for which well-tested models often exist. However, one of the disadvantages of this technique is that it requires a large number of atoms to reach a scale that is sufficiently representative of the phenomena being studied, in order to be able to observe them and overcome size effects as far as possible. Over the past decade, numerous efforts have been made to adapt DM codes to the latest supercomputer architectures, enabling us to simulate systems with several billion atoms. These MD simulations have become true numerical experiments, generating huge quantities of data to be processed. Nowadays, the time required for post-processing and analysis of this data can now become more important than for simulation, and is becoming an essential issue. In this thesis, we have developed an analysis algorithm for MD simulation capable of processing multi-billion-atom workloads with a computational cost of the order of one percent of the total simulation time. The algorithm detects and characterizes areas of interest in the simulation based on user-defined criteria, making it highly versatile. We have based this algorithm on connected components labeling techniques, parallelized in shared-memory, which we have extended to hybrid shared and distributed memory parallelism. This extension to distributed-memory settings not only enables us to handle the quantity of data generated by the simulations, but has also enabled us to incorporate our analysis into the CEA MD code exaStamp for in-situ processing of the simulations. This in-situ processing of the simulation reduces the amount of data to be stored on disk and increases the frequency of analysis on a simulation compared to what could be done in post-processing. A characterization of the errors associated with the measurements made by our analysis has been carried out, making it directly exploitable by physicists. In particular, we have applied it to a number of physical cases: micro-jetting and splashing where aggregate detection is required, as well as shock damage simulations (spalling) involving void detection
CHANG, YUAN CHUAN, i 張永專. "Connected Components Labeling Algorithm Applied to Image Segmentation". Thesis, 1995. http://ndltd.ncl.edu.tw/handle/86231509563166292537.
Pełny tekst źródła國立中山大學
電機工程研究所
83
A new image segmentation algorithm based on the textural information of image pixels is presented. Image segmentation is a fundamental technique for the application of computer vision. There are two difficulties for the technique of image segmentation.First, the choice of the characteristic with which the regions of an image segmentation are homogeneous enough for the decision.Second,the connection problem for pixels within the segmented components in an arbitrary shape. In this thesis, we propose a new property vector related to the concept of image texture and employ the technique of connected components labeling to solve the problems. The image structure are defined to be the linear relationship between pixels with their upper and left neighbors. Image can be very inhomogenious. However, the image structure may be uniform enough in some image components. By this image texture, individual image constraint equations can be set up for those triple pixel. These equations are the property vectors chosen by us for segmentation decision. Discrepancy between equations are measured by sequential least squared method. A recursive method for computing the error is developed in this thesis for simplifying computation. Connected components labeling method was originally developed for the binary images. By the introduction of our property vector, the labeling method are extended into the gray image segmentation. For computing efficiency, the Ronse and Devijver''s run-length version of labeling method is modified by us for our application. Our methods of computing segmentation error for property vectors and labeling segmentation components are both based upon a top-down and left- right scanning order. As a summary, our segmentation computing are very efficient due to the recursive computation structure and the scanning method.
WU, BO-YEN, i 吳柏彥. "Connected Components Labeling Algorithm By Unidirectional Run-length Table Searching". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/52054847292075951596.
Pełny tekst źródła輔仁大學
資訊工程學系碩士班
104
In order to improve the efficiency of connected components labeling, this paper presents a new connected components labeling method by unidirectional run-length table searching. Instead of searching the run-length table up and down, this method only needs to search the table in one direction. The number of run-length code searching in the labeling algorithm is reduced with our method, thus, our method increases the efficiency of connected components labeling. Also in our method the run-length code of each connected components are stored as a linked list. When extracting the blobs, it only need to read the linked list of each blobs. The result of experiments demonstrates that our method reduces the total searching times, compared with the previous algorithm.
Lin, Keng-li, i 林耿立. "An Efficient Two-Phase Algorithm for Labeling Connected Components Based on a Two-Scan". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/21955013549406582369.
Pełny tekst źródła國立臺灣科技大學
資訊工程系
97
Owing to the demand of more efficient technology about robot vision applications, the researches on intelligent pattern detection and recognition have been rapidly grown in recent years. In addition to that an adaptive pattern classifier may affect recognition results, one of the most important characteristics of an intelligent robot vision system is to employ a quick and efficient pattern extraction method. To achieve such a good, in this thesis, we present an efficient two-phase labeling connected components algorithm based on a two-scan structure. In the labeling step, unlike conventional labeling algorithms using the same labeling operations for each object pixel for labeling or relation checking, our algorithm executes different labeling operations for each pixel depending on its location in a row of contiguous object pixels. Thus, we can reduce many unnecessary labeling operations and lessen the execution time. As to the label relation table, we propose a novel table structure similar to a circle to resolve label equivalence between provisional label sets. It not only can record all information as same as conventional label relation tables, but also can reduce 1/3 memory space at most than the other so. The implementation of this structure only requires two 1-D arrays, and we can easily record the relation between provisional labels and their corresponding representative labels by use of our record procedure. Experimental results reveal that the performance of our algorithm is superior to those of all conventional labeling algorithms for both ordinary and noisy images under the common sequential execution hardware.
Części książek na temat "Connected components labeling (CCL)"
Bolelli, Federico, Stefano Allegretti i Costantino Grana. "Connected Components Labeling on Bitonal Images". W Image Analysis and Processing – ICIAP 2022, 347–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06430-2_29.
Pełny tekst źródłaGrana, Costantino, Lorenzo Baraldi i Federico Bolelli. "Optimized Connected Components Labeling with Pixel Prediction". W Advanced Concepts for Intelligent Vision Systems, 431–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48680-2_38.
Pełny tekst źródłaMa, Dongdong, Shaojun Liu i Qingmin Liao. "Run-Based Connected Components Labeling Using Double-Row Scan". W Lecture Notes in Computer Science, 264–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71598-8_24.
Pełny tekst źródłaBolelli, Federico, Michele Cancilla, Lorenzo Baraldi i Costantino Grana. "Connected Components Labeling on DRAGs: Implementation and Reproducibility Notes". W Reproducible Research in Pattern Recognition, 89–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23987-9_7.
Pełny tekst źródłaAsano, Tetsuo, i Sergey Bereg. "A New Framework for Connected Components Labeling of Binary Images". W Combinatorial Image Analaysis, 90–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34732-0_7.
Pełny tekst źródłaBolelli, Federico, Michele Cancilla i Costantino Grana. "Two More Strategies to Speed Up Connected Components Labeling Algorithms". W Image Analysis and Processing - ICIAP 2017, 48–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68548-9_5.
Pełny tekst źródłaHarrison, Cyrus, Jordan Weiler, Ryan Bleile, Kelly Gaither i Hank Childs. "A Distributed-Memory Algorithm for Connected Components Labeling of Simulation Data". W Mathematics and Visualization, 3–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44900-4_1.
Pełny tekst źródłaAllegretti, Stefano, Federico Bolelli, Michele Cancilla, Federico Pollastri, Laura Canalini i Costantino Grana. "How Does Connected Components Labeling with Decision Trees Perform on GPUs?" W Computer Analysis of Images and Patterns, 39–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_4.
Pełny tekst źródłaRasmusson, A., T. S. Sørensen i G. Ziegler. "Connected Components Labeling on the GPU with Generalization to Voronoi Diagrams and Signed Distance Fields". W Advances in Visual Computing, 206–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41914-0_21.
Pełny tekst źródłaBolelli, Federico, Stefano Allegretti i Costantino Grana. "A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes: Implementation and Reproducibility Notes". W Reproducible Research in Pattern Recognition, 139–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76423-4_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Connected components labeling (CCL)"
Monif, Mamdouh, Kinan Mansour, Waad Ammar i Maan Ammar. "Automatic Detection and Extraction of Lungs Cancer Nodules Using Connected Components Labeling and Distance Measure Based Classification". W 11th International Conference on Computer Science and Information Technology (CCSIT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110705.
Pełny tekst źródłaKhoshki, Rohollah Mazrae, i Subramaniam Ganesan. "Improved Automatic License Plate Recognition (ALPR) system based on single pass Connected Component Labeling (CCL) and reign property function". W 2015 IEEE International Conference on Electro/Information Technology (EIT). IEEE, 2015. http://dx.doi.org/10.1109/eit.2015.7293378.
Pełny tekst źródłaBolelli, Federico, Lorenzo Baraldi, Michele Cancilla i Costantino Grana. "Connected Components Labeling on DRAGs". W 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8545505.
Pełny tekst źródłaGrana, Costantino, Daniele Borghesani i Rita Cucchiara. "Fast block based connected components labeling". W 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5413731.
Pełny tekst źródłaNagaraj, Nithin, i Shekhar Dwivedi. "CxCxC: compressed connected components labeling algorithm". W Medical Imaging, redaktorzy Josien P. W. Pluim i Joseph M. Reinhardt. SPIE, 2007. http://dx.doi.org/10.1117/12.709210.
Pełny tekst źródłaZuo, Yingnan, i Danyang Zhang. "Connected Components Labeling Algorithms: A Review". W 2023 9th International Conference on Computer and Communications (ICCC). IEEE, 2023. http://dx.doi.org/10.1109/iccc59590.2023.10507420.
Pełny tekst źródłaGrana, Costantino, Daniele Borghesani, Paolo Santinelli i Rita Cucchiara. "High Performance Connected Components Labeling on FPGA". W 2010 21st International Conference on Database and Expert Systems Applications (DEXA). IEEE, 2010. http://dx.doi.org/10.1109/dexa.2010.57.
Pełny tekst źródłaGrana, Costantino, Federico Bolelli, Lorenzo Baraldi i Roberto Vezzani. "YACCLAB - Yet Another Connected Components Labeling Benchmark". W 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900112.
Pełny tekst źródłaAllegretti, Stefano, Federico Bolelli, Michele Cancilla i Costantino Grana. "Optimizing GPU-Based Connected Components Labeling Algorithms". W 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). IEEE, 2018. http://dx.doi.org/10.1109/ipas.2018.8708900.
Pełny tekst źródłaSantiago, Diego J. C., Tsang Ing Ren, George D. C. Cavalcanti i Tsang Ing Jyh. "Fast block-based algorithms for connected components labeling". W ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638021.
Pełny tekst źródłaRaporty organizacyjne na temat "Connected components labeling (CCL)"
Yang, Xue D. An Improved Algorithm for Labeling Connected Components in a Binary Image. Fort Belvoir, VA: Defense Technical Information Center, marzec 1989. http://dx.doi.org/10.21236/ada210100.
Pełny tekst źródła