Gotowa bibliografia na temat „Coniferâs, Fossil”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coniferâs, Fossil”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Coniferâs, Fossil"
Ram-Awatar i A. Rajanikanth. "Triassic Conifer wood from the Tiki Formation, South Rewa Basin, Madhya Pradesh, India". Journal of Palaeosciences 56 (31.12.2007): 127–32. http://dx.doi.org/10.54991/jop.2007.63.
Pełny tekst źródłaJordan, Gregory J., Raymond J. Carpenter, Jennifer M. Bannister, Daphne E. Lee, Dallas C. Mildenhall i Robert S. Hill. "High conifer diversity in Oligo-Miocene New Zealand". Australian Systematic Botany 24, nr 2 (2011): 121. http://dx.doi.org/10.1071/sb11004.
Pełny tekst źródłaYao, Zhao-Qi, Lu-Jun Liu, Gar W. Rothwell i Gene Mapes. "Szecladia new genus, a late Permian conifer with multiveined leaves from South China". Journal of Paleontology 74, nr 3 (maj 2000): 524–31. http://dx.doi.org/10.1017/s0022336000031784.
Pełny tekst źródłaBomfleur, Benjamin, Christian Pott i Hans Kerp. "Plant assemblages from the Shafer Peak Formation (Lower Jurassic), north Victoria Land, Transantarctic Mountains". Antarctic Science 23, nr 2 (23.11.2010): 188–208. http://dx.doi.org/10.1017/s0954102010000866.
Pełny tekst źródłaHansen, Barbara C. S. "Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay Lowlands". Canadian Journal of Botany 73, nr 2 (1.02.1995): 244–52. http://dx.doi.org/10.1139/b95-027.
Pełny tekst źródłaKunzmann, L., B. A. R. Mohr i M. E. C. Bernardes-de-Oliveira. "Gymnosperms from the Lower Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis)". Fossil Record 7, nr 1 (1.01.2004): 155–74. http://dx.doi.org/10.5194/fr-7-155-2004.
Pełny tekst źródłaAtkinson, Brian A., Dori L. Contreras, Ruth A. Stockey i Gar W. Rothwell. "Ancient diversity and turnover of cunninghamioid conifers (Cupressaceae): two new genera from the Upper Cretaceous of Hokkaido, Japan". Botany 99, nr 8 (sierpień 2021): 457–73. http://dx.doi.org/10.1139/cjb-2021-0005.
Pełny tekst źródłaKvaček, Jiří, i Jakub Sakala. "Late Cretaceous flora of James Ross Island (Antarctica) – preliminary report". Czech Polar Reports 1, nr 2 (1.06.2011): 96–103. http://dx.doi.org/10.5817/cpr2011-2-9.
Pełny tekst źródłaCondamine, Fabien L., Daniele Silvestro, Eva B. Koppelhus i Alexandre Antonelli. "The rise of angiosperms pushed conifers to decline during global cooling". Proceedings of the National Academy of Sciences 117, nr 46 (2.11.2020): 28867–75. http://dx.doi.org/10.1073/pnas.2005571117.
Pełny tekst źródłaTaylor, David W., J. Michael Moldowan i Leo J. Hickey. "Investigation of the terrestrial occurrence and biological source of the petroleum geochemical biomarker oleanane". Paleontological Society Special Publications 6 (1992): 286. http://dx.doi.org/10.1017/s2475262200008467.
Pełny tekst źródłaRozprawy doktorskie na temat "Coniferâs, Fossil"
Ewin, Timothy Alfred. "Identification of conifer families using SEM analysis of fossil and extant conifer leaf cuticles". Thesis, University of Manchester, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493777.
Pełny tekst źródłaBarral, Cuesta Abel. "The carbon isotope composition of the fossil conifer Frenelopsis as a proxy for reconstructing Cretaceous atmospheric CO2". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1148.
Pełny tekst źródłaThe Cretaceous was a period characterized by strongly marked climate change and major carbon cycle instability. Atmospheric CO2 has repeatedly been pointed out as a major agent involved in these changing conditions during the period. However, long-term trends in CO2 described for the Cretaceous are not consistent with those of temperature and the large disturbance events of the carbon cycle described for the period. This raises a double question of whether descriptions of the long-term evolution of atmospheric CO2 made so far are accurate or, if so, atmospheric CO2 was actually a major driver of carbon cycle and climate dynamics as usually stated. In this thesis the close relationship between the carbon isotope composition of plants and atmospheric CO2 is used to address this question. Based on its ecological significance, distribution, morphological features and its excellent preservation, the fossil conifer genus Frenelopsis is proposed as a new plant proxy for climate reconstructions during the Cretaceous. The capacity of carbon isotope compositions of Frenelopsis leaves (d13Cleaf) to reconstruct past atmospheric CO2, with regards to both carbon isotope composition (d13CCO2) and concentration (pCO2), is tested based on materials coming from twelve Cretaceous episodes. To provide a framework to test the capacity of d13Cleaf to reconstruct d13CCO2 and allowing for climate estimates from carbon isotope discrimination by plants (?13Cleaf), a new d13CCO2 curve for the Cretaceous based on carbon isotope compositions of marine carbonates has been constructed. Comparison with d13Cleaf-based d13CCO2 estimates reveals that although d13CCO2 and d13Cleaf values follow consistent trends, models developed so far to estimate d13CCO2 from d13Cleaf tend to exaggerate d13CCO2 trends because of assuming a linear relationship between both values. However, given the hyperbolic relationship between ?13Cleaf and pCO2, by considering an independently-estimated correction factor for pCO2 for a given episode, d13Cleaf values may be a valuable proxy for d13CCO2 reconstructions. ?13Cleaf estimates obtained from d13CCO2 and d13Cleaf values were used to reconstruct the long-term evolution of pCO2. The magnitude of estimated pCO2 values is in accordance with that of the most recent and relevant model- and proxy-based pCO2 reconstructions. However, these new results evidence long-term drawdowns of pCO2 for Cretaceous time intervals in which temperature maxima have been described
Lu, Yueming. "Détermination de la signature moléculaire des conifères fossiles par la maturation artificielle de leurs homologues actuels : implications paléobotaniques et paléoenvironnementales". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0353/document.
Pełny tekst źródłaMany biomolecules that constitute terrestrial vascular plants are only synthesized by a restricted number of plant taxa and have thus a chemotaxonomic specificity. Some of these biomolecules, like the terpenoids, are particularly resistant and can be preserved within sediments where they are transformed into geomolecules during diagenesis. Geoterpenoids keep, partially or totally, their initial specificity (palaeochemotaxonomic specificity). However, our current knowledge in botanical palaeochemotaxonomy, allowing to link these plant biomarkers to plant taxa, remains incomplete. The aim of this study is to determine the molecular signature of fossil conifers. In this objective, 68 species belonging to the 7 extant conifer families were subjected to artificial maturation by confined pyrolysis. This process converts the bioterpenoids included within the plant material into geoterpenoids. The results show that the "fossilized" Pinaceae, Araucariaceae, Cupressaceae, Sciadopityaceae, Podocarpaceae, Taxodiaceae and Taxaceae can distinguished from each other by the nature and the relative proportion of these geoterpenoids. The comparison of these molecular signatures allows to achieve intergeneric groups for each family. These groups are comparable to those of the phylogenetic classification. In the future, these results could be used for palaeobotanical, palaeoenvironmental, environmental and archaeological assessments
Brown, MJM. "Old plants, new tricks : machine learning and the conifer fossil record". Thesis, 2022. https://eprints.utas.edu.au/47489/1/Brown_whole_thesis.pdf.
Pełny tekst źródłaKsiążki na temat "Coniferâs, Fossil"
Dijkstra, S. J. Gymnospermae (Gingophyta et Coniferae). Leiden: Backhuys Publishers, 1999.
Znajdź pełny tekst źródłaJ, Enright Neal, i Hill Robert S, red. Ecology of the southern conifers. Washington, D.C: Smithsonian Institution Press, 1995.
Znajdź pełny tekst źródłaSrinivasan, Vijayalakshmi. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Copenhagen: Royal Danish Academy of Sciences and Letters, 1989.
Znajdź pełny tekst źródłaKunzmann, Lutz. Koniferen der Oberkreide und ihre Relikte im Tertiär Europas: Ein Beitrag zur kenntnis ausgestorbener Taxodiaceae und Geinitziaceae fam. nov. Dresden: Staatliches Museums für Mineralogie und Geologie zu Dresden, 1999.
Znajdź pełny tekst źródłaThe Wollemi pine: The incredible discovery of a living fossil from the age of the dinosaurs. Melbourne: Text Publishing, 2000.
Znajdź pełny tekst źródłaThe Wollemi pine: The incredible discovery of a living fossil from the age of the dinosaurs. Melbourne, Australia: Text Publishing, 2005.
Znajdź pełny tekst źródłaThe Wollemi pine. Melbourne, Australia: Text Publishing, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Coniferâs, Fossil"
Górriz-Mifsud, Elena, Aitor Ameztegui, Jose Ramón González i Antoni Trasobares. "Climate-Smart Forestry Case Study: Spain". W Forest Bioeconomy and Climate Change, 211–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99206-4_13.
Pełny tekst źródłaTAYLOR, T. "Conifers". W Biology and Evolution of Fossil Plants, 805–71. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-12-373972-8.00021-8.
Pełny tekst źródłaLove*, Renee L., Lindsay MacKenzie* i Ian Spendlove*. "Uncovering a Miocene forest in ancient Lake Clarkia and beyond". W Proterozoic Nuna to Pleistocene Megafloods: Sharing Geology of the Inland Northwest, 123–38. Geological Society of America, 2024. http://dx.doi.org/10.1130/2024.0069(06).
Pełny tekst źródłaSavill, Peter, Julian Evans, Daniel Auclair i Jan Falck. "Short-rotation crops". W Plantation Silviculture in Europe, 219–28. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198549093.003.0015.
Pełny tekst źródłaMorey, Elsie Darrah. "Carl Rudolf Florin (1894–1965): A pioneer in fossil-conifer studies". W Historical Perspective of Early Twentieth Century Carboniferous Paleobotany in North America. Geological Society of America, 1995. http://dx.doi.org/10.1130/mem185-p119.
Pełny tekst źródłaOrnduff, Robert. "The Sequoia Sempervirens (Coast Redwood) Forest of the Pacific Coast, USA". W Coastally Restricted Forests, 221–36. Oxford University PressNew York, NY, 1997. http://dx.doi.org/10.1093/oso/9780195075670.003.0015.
Pełny tekst źródłaParacer, Surindar, i Vernon Ahmadjian. "Fungal Associations Of Protozoa And Animals". W Symbiosis, 89–108. Oxford University PressNew York, NY, 2000. http://dx.doi.org/10.1093/oso/9780195118063.003.0007.
Pełny tekst źródłaDolezych, M., L. Reinhardt, J. Kus i V. Annacker. "Taxonomy of Cretaceous–Paleogene coniferous woods and their distribution in fossil Lagerstätten of the high latitudes". W Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens. Geological Society of America, 2019. http://dx.doi.org/10.1130/2018.2541(02).
Pełny tekst źródłaStreszczenia konferencji na temat "Coniferâs, Fossil"
Brown, Alexander L., i Richard A. Jepsen. "Forest Thinning Residues as a Potential Fuel Source". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11679.
Pełny tekst źródłaLeng, Qin, Jiaqi Liang, Daianne Höfig, Gao Niu, Liang Xiao, Yi Ge Zhang i Hong Yang. "Assessment of natural variations of key fossil parameters in conifer species and their impact on the accuracy of the leaf gas exchange model for ancient CO2 reconstruction". W Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6576.
Pełny tekst źródła