Gotowa bibliografia na temat „Confocal imaging on living cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Confocal imaging on living cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Confocal imaging on living cells"
Williams, D. A., S. H. Cody, C. A. Gehring, R. W. Parish i P. J. Harris. "Confocal imaging of ionised calcium in living plant cells". Cell Calcium 11, nr 4 (kwiecień 1990): 291–97. http://dx.doi.org/10.1016/0143-4160(90)90006-g.
Pełny tekst źródłaFilić, Vedrana, i Igor Weber. "A young researcher’s guide to three-dimensional fluorescence microscopy of living cells". Periodicum Biologorum 125, nr 1-2 (25.10.2023): 133–37. http://dx.doi.org/10.18054/pb.v125i1-2.25140.
Pełny tekst źródłaSCHWARZLÄNDER, M., M. D. FRICKER, C. MÜLLER, L. MARTY, T. BRACH, J. NOVAK, L. J. SWEETLOVE, R. HELL i A. J. MEYER. "Confocal imaging of glutathione redox potential in living plant cells". Journal of Microscopy 231, nr 2 (sierpień 2008): 299–316. http://dx.doi.org/10.1111/j.1365-2818.2008.02030.x.
Pełny tekst źródłaHe, Fang, Ze-Yu Ye, Li-Dong Zhao, Bin-Cheng Yin i Bang-Ce Ye. "Probing exosome internalization pathways through confocal microscopy imaging". Chemical Communications 55, nr 93 (2019): 14015–18. http://dx.doi.org/10.1039/c9cc07491k.
Pełny tekst źródłaZoladek, A., F. Pascut, P. Patel i I. Notingher. "Development of Raman Imaging System for time-course imaging of single living cells". Spectroscopy 24, nr 1-2 (2010): 131–36. http://dx.doi.org/10.1155/2010/521962.
Pełny tekst źródłaSkiba, Joanna, Aleksandra Kowalczyk, Marta A. Fik, Magdalena Gapińska, Damian Trzybiński, Krzysztof Woźniak, Valerije Vrček, Rafał Czerwieniec i Konrad Kowalski. "Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells". Photochemical & Photobiological Sciences 18, nr 10 (2019): 2449–60. http://dx.doi.org/10.1039/c9pp00271e.
Pełny tekst źródłaHe, Zhaoshuai, Yajie Chou, Hanxin Zhou, Han Zhang, Tanyu Cheng i Guohua Liu. "A nitroreductase and acidity detecting dual functional ratiometric fluorescent probe for selectively imaging tumor cells". Organic & Biomolecular Chemistry 16, nr 17 (2018): 3266–72. http://dx.doi.org/10.1039/c8ob00670a.
Pełny tekst źródłaWANG, XIAO-PING, HUAI-NA YU i TONG-SHENG CHEN. "QUANTITATIVE FRET MEASUREMENT BASED ON CONFOCAL MICROSCOPY IMAGING AND PARTIAL ACCEPTOR PHOTOBLEACHING". Journal of Innovative Optical Health Sciences 05, nr 03 (lipiec 2012): 1250015. http://dx.doi.org/10.1142/s1793545812500150.
Pełny tekst źródłaOkuno, Masanari, i Hiro-o. Hamaguchi. "Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells". Optics Letters 35, nr 24 (2.12.2010): 4096. http://dx.doi.org/10.1364/ol.35.004096.
Pełny tekst źródłaFeofanov, Alexei V., Alexei I. Grichine, Larissa A. Shitova, Tatyana A. Karmakova, Raisa I. Yakubovskaya, Marguerite Egret-Charlier i Paul Vigny. "Confocal Raman Microspectroscopy and Imaging Study of Theraphthal in Living Cancer Cells". Biophysical Journal 78, nr 1 (styczeń 2000): 499–512. http://dx.doi.org/10.1016/s0006-3495(00)76612-4.
Pełny tekst źródłaRozprawy doktorskie na temat "Confocal imaging on living cells"
Bokhari, Ramiz Ahmed. "Confocal Imaging and Analysis of Quantum Dots on living Cells". Thesis, KTH, Tillämpad fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129972.
Pełny tekst źródłaBayard, Anaïs. "Study of the Physiological Response of NucS to Genotoxic Stress in Actinobacteria". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX063.
Pełny tekst źródłaDNA replication accuracy ensures proper genetic transmission. Damage from external factors or internal events threatens genomic integrity. Actinobacteria, lacking canonical MMR proteins, possess NucS (EndoMS), an ATP-independent enzyme involved in a non-canonical mismatch repair pathway. While NucS's activity on mismatches is documented, its in vivo role and implications in DNA Damage Repair systems require further understanding.This study aims to characterise NucS's role in Double-Strand Break Repair (DSBR). Our findings show that mScarlet1-NucSD144A forms polar foci in response to DNA damage, especially DSBs and complex recruitment in apoptosis-like cells.Corynebacterium glutamicum, CglΔnucS bacteria exhibits higher homologous recombination (HR) activation and increased DSBs compared to CglWT, indicating NucS's role in DSBR efficiency and regulation. CglΔnucS bacteria have a growth advantage under genotoxic stress, likely due to altered DSBR mechanisms. Bioinformatic analyses predict NucS interactions with key enzymes of RH and other DNA repair pathways and metabolism and energy regulation.NucS may bind and stabilise free DNA ends generated by DSBs, balancing HR and participating in DSB repair through microhomology-mediated end joining (MMEJ). Future studies should explore post-translational modifications and metabolic conditions regulating NucS reponse and its in vitro activity on DSBs and HR intermediates
Zoladek, Alina. "Confocal Raman imaging of live cells". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13338/.
Pełny tekst źródłaZeskind, Benjamin J. "Quantitative imaging of living cells by deep ultraviolet microscopy". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38693.
Pełny tekst źródłaIncludes bibliographical references (p. 139-145).
Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy received attention in the 1950s as a way to generate image contrast from the strong absorbance of proteins and nucleic acids at wavelengths shorter than 300 nm. However, the lethal effects of these wavelengths limited their usefulness in studies of cell function, separating the contributions of protein and nucleic acid proved difficult, and scattering artifacts were a significant concern. We have used short exposures of deep-ultraviolet light synchronized with an ultraviolet-sensitive camera to observe mitosis and motility in living cells without causing necrosis, and quantified absorbance at 280 nm and 260 nm together with tryptophan native fluorescence in order to calculate maps of nucleic acid mass, protein mass, and quantum yield in unlabeled cells. We have also developed a method using images acquired at 320nm and 340nm, and an equation for Mie scattering, to determine a scattering correction factor for each pixel at 260nm and 280nm. These developments overcome the three main obstacles to previous deep UV microscopy efforts, creating a new approach to imaging unlabeled living cells that acquires quantitative information about protein and nucleic acid as a function of position and time.
by Benjamin J. Zeskind.
Ph.D.
Chen, Wei. "Analysis of mass transport properties of plant cells by confocal microscopy and imaging techniques /". free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953850.
Pełny tekst źródłaTabone, Roberta. "Sinthesys of heteroleptic zinc complexes for imaging in living cells". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19188/.
Pełny tekst źródłaZou, Peng 1985. "Enzyme-based reporters for mapping proteome and imaging proteins in living cells". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79264.
Pełny tekst źródłaVita. Cataloged from PDF version of thesis.
Includes bibliographical references.
Each eukaryotic cell is exquisitely divided into organellar compartments whose functions are uniquely defined by the set of proteins they possess. For each individual protein, precise targeting to a specific sub-cellular location and trafficking between compartments are often key to its proper function. In fact, many human diseases are linked to mutations that cause mistargeting and/or defective trafficking. This thesis describes the development of enzyme-based reporters for measuring protein localization and trafficking. We employ two complementary approaches: a top-down approach, involving proteomics, to simultaneously acquire the subcellular localization information for hundreds of proteins; and a bottom-up approach, involving fluorescence imaging, to record detailed spatial information for proteins on an individual basis. This thesis is therefore divided into the following two parts. Part A describes a promiscuous protein labeling technique for proteomic mapping of organelles. This method capitalizes on peroxidase as a source of free radical generator. Compared to traditional sub-cellular fractionation methods, this novel approach obviates the need of organelle purification, thereby not only eliminating the potential artifacts associated with purification, but also greatly improving the temporal resolution of the proteomic mapping. Applying this technique to study the proteome of mitochondrial matrix and endoplasmic reticulum lumen has led to the discovery of several mitochondrial proteins whose localizations have previously been unknown or ambiguous. Part B discusses the development and application of site-specific protein labeling methods for studying receptor trafficking mechanisms. Building upon previous work in our lab, we utilized the Escherichia coli biotin ligase BirA and its acceptor peptide to site-specifically label the low-density lipoprotein receptor and studied its internalization and trafficking both at the ensemble imaging and single-molecule level. We discovered that this receptor internalizes as an oligomer into cells.
by Peng Zou.
Ph.D.
Hammar, Petter. "lac of Time : Transcription Factor Kinetics in Living Cells". Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198814.
Pełny tekst źródłaTamura, Tomonori. "Endogenous protein imaging and analysis in living cells by selective chemical labeling methods". 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174965.
Pełny tekst źródłaPerez, Cota Fernando. "Opto-acoustic thin-film transducers for imaging of Brillouin oscillations on living cells". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/32946/.
Pełny tekst źródłaKsiążki na temat "Confocal imaging on living cells"
1959-, Fasolato Cristina, i Rizzuto Rosario 1962-, red. Imaging living cells. Berlin: Springer, 1999.
Znajdź pełny tekst źródłaRizzuto, Rosario, i Cristina Fasolato, red. Imaging Living Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6.
Pełny tekst źródłaL, Farkas Daniel, Tromberg Bruce J, International Biomedical Optics Society, Society of Photo-optical Instrumentation Engineers. i American Society for Laser Medicine and Surgery., red. Proceedings of functional imaging and optical manipulation of living cells: 10-11 February 1997, San Jose, California. Bellingham, Wash., USA: SPIE, 1997.
Znajdź pełny tekst źródła1934-, Asakura Toshimitsu, Society of Photo-optical Instrumentation Engineers. i Carnegie-Mellon University. Center for Light Microscope Imaging and Biotechnology., red. Proceedings of optical diagnostics of living cells and biofluids: 28 January-1 February 1996, San Jose, California. Bellingham, Wash., USA: SPIE, 1996.
Znajdź pełny tekst źródłaL, Farkas Daniel, Leif Robert C, Society of Photo-optical Instrumentation Engineers. i International Biomedical Optics Society, red. Optical diagnostics of living cells III: 24-25 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.
Znajdź pełny tekst źródłaImaging Living Cells. Island Press, 1998.
Znajdź pełny tekst źródłaRizzuto, Rosario, i Cristina Fasolato. Imaging Living Cells. Springer London, Limited, 2012.
Znajdź pełny tekst źródłaQian, Weijun. Dynamic imaging of secretion from pancreatic beta-cells by confocal fluorescence microscopy. 2002.
Znajdź pełny tekst źródłaQian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.
Znajdź pełny tekst źródłaQian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Confocal imaging on living cells"
Bolsover, Stephen. "Confocal Calcium Imaging". W Imaging Living Cells, 92–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6_4.
Pełny tekst źródłaLemasters, John J., Ting Qian, Donna R. Trollinger, Barbara J. Muller-Borer, Steven P. Elmore i Wayne E. Cascio. "Laser Scanning Confocal Microscopy Applied to Living Cells and Tissues". W Methods in Cellular Imaging, 66–87. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_5.
Pełny tekst źródłaFeofanov, A. V., A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, M. Egret-Charlier i P. Vigny. "Confocal Raman imaging study of uptake and distribution of antitumor agent Teraftal in living A549 cancer cells". W Spectroscopy of Biological Molecules: New Directions, 491–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_219.
Pełny tekst źródłaChourpa, Igor, Serguei Charonov i Michel Manfait. "Comparison of surface-enhanced and non-enhanced Raman techniques as used for confocal multispectral imaging on living cells". W Spectroscopy of Biological Molecules: New Directions, 461–62. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_207.
Pełny tekst źródłaFeofanov, Alexei V. "Molecular interactions of antitumor drugs: from solution to living cells and tissue structures. Confocal spectral imaging (CSI) approach". W Spectroscopy of Biological Molecules: New Directions, 487–88. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_217.
Pełny tekst źródłaFeofanov, A. V., I. A. Kudelina, A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, A. F. Mironov, M. Egret-Charlier i P. Vigny. "Pharmacodynamics and localization of 3-devinyl-3-formylchlorin p6 in living cancer cells as studied with confocal spectral imaging (CSI) technique". W Spectroscopy of Biological Molecules: New Directions, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_220.
Pełny tekst źródłaHibbs, Alan R. "Imaging Live Cells". W Confocal Microscopy for Biologists, 279–323. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48565-7_12.
Pełny tekst źródłaMoreno, Nuno, Susan Bougourd, Jim Haseloff i José A. Feijó. "Imaging Plant Cells". W Handbook Of Biological Confocal Microscopy, 769–87. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_44.
Pełny tekst źródłaDailey, Michael E., Erik Manders, David R. Soll i Mark Terasaki. "Confocal Microscopy of Living Cells". W Handbook Of Biological Confocal Microscopy, 381–403. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_19.
Pełny tekst źródłaTerasaki, M., i M. E. Dailey. "Confocal Microscopy of Living Cells". W Handbook of Biological Confocal Microscopy, 327–46. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5348-6_19.
Pełny tekst źródłaStreszczenia konferencji na temat "Confocal imaging on living cells"
Miccio, Lisa, Daniele Pirone, Jaromir Behal, Giusy Giugliano, Michela Schiavo, Marika Valentino, Vittorio Bianco, Pasquale Memmolo i Pietro Ferraro. "Living cells behave as micro-lenses: label-free biomarkers for diagnosis and biocompatible optical components". W Digital Holography and Three-Dimensional Imaging, W1A.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w1a.4.
Pełny tekst źródłaEnloe, L. Charity, i Lawrence R. Griffing. "Improved volume rendering for the visualization of living cells examined with confocal microscopy". W Electronic Imaging, redaktorzy Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts i Craig M. Wittenbrink. SPIE, 2000. http://dx.doi.org/10.1117/12.378915.
Pełny tekst źródłaBaiazitova, Larisa, Vratislav Cmiel, Josef Skopalik, Ondrej Svoboda i Ivo Provaznik. "Three-dimensional fluorescence lifetime imaging in confocal microscopy of living cells". W 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081245.
Pełny tekst źródłaMitra, Debasis, Rostyslav Boutchko, Judhajeet Ray i Marit Nilsen-Hamilton. "Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells". W SPIE Medical Imaging, redaktorzy Metin N. Gurcan i Anant Madabhushi. SPIE, 2015. http://dx.doi.org/10.1117/12.2081691.
Pełny tekst źródłaPitkeathly, William T. E., Joshua Z. Rappoport i Ela Claridge. "Co-registration of total internal reflection fluorescence and confocal microscopy images for studying vesicle trafficking in living cells". W 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235514.
Pełny tekst źródłaTang, Xin, Tony Cappa, Theresa B. Kuhlenschmidt, Mark S. Kuhlenschmidt i Taher A. Saif. "Studying the Mechanical Sensitivity of Human Colon Cancer Cells Through a Novel Bio-MEMS Force Sensor". W ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13237.
Pełny tekst źródłaChourpa, Igor, Serguei Charonov i Michel Manfait. "Raman and/or surface-enhanced Raman: advantages and limitations when applied for confocal multispectral imaging with living cells". W BiOS 2000 The International Symposium on Biomedical Optics, redaktorzy Anita Mahadevan-Jansen i Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384960.
Pełny tekst źródłaChourpa, Igor, Manuela Pereira, Jean-Marc Millot, Hamid Morjani i Michel Manfait. "Confocal spectral imaging by microspectrofluorometry using two-photon excitation: application to the study of anticancer drugs within single living cancer cells". W BiOS '99 International Biomedical Optics Symposium, redaktorzy Daniel L. Farkas, Robert C. Leif i Bruce J. Tromberg. SPIE, 1999. http://dx.doi.org/10.1117/12.349215.
Pełny tekst źródłaFujita, Katsumasa, Tomoyuki Kaneko, Osamu Nakamura, Masahito Oyamada, Tetsuro Takamatsu i Satoshi Kawata. "Real-time Ca ion wave imaging in living rat cardiac muscle cells by a confocal multiphoton microscope with a microlens-pinhole array scanner". W BiOS 2000 The International Symposium on Biomedical Optics, redaktorzy Daniel L. Farkas i Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384225.
Pełny tekst źródłaLasher, Richard A., Frank B. Sachse i Robert W. Hitchcock. "Confocal Microscopy and Image Processing Techniques for Online Monitoring of Engineered Tissue". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206758.
Pełny tekst źródłaRaporty organizacyjne na temat "Confocal imaging on living cells"
Guttmann, G. Biological soft x-ray contact microscopy: Imaging living CHO-SC1 cells and other biological materials. Office of Scientific and Technical Information (OSTI), sierpień 1989. http://dx.doi.org/10.2172/7001378.
Pełny tekst źródłaVenedicto, Melissa, i Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, październik 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Pełny tekst źródłaHorwitz, Benjamin, i Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, styczeń 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Pełny tekst źródła