Artykuły w czasopismach na temat „Conducting Polymer Nanotubes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Conducting Polymer Nanotubes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rivière, Pauline, Tiina E. Nypelö, Michael Obersriebnig, Henry Bock, Marcus Müller, Norbert Mundigler i Rupert Wimmer. "Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites". Journal of Thermoplastic Composite Materials 30, nr 12 (23.05.2016): 1615–38. http://dx.doi.org/10.1177/0892705716649651.
Pełny tekst źródłaZakaria, Mohd Yusuf, Hendra Suherman, Jaafar Sahari i Abu Bakar Sulong. "Effect of Mixing Parameter on Electrical Conductivity of Carbon Black/Graphite/Epoxy Nanocomposite Using Taguchi Method". Applied Mechanics and Materials 393 (wrzesień 2013): 68–73. http://dx.doi.org/10.4028/www.scientific.net/amm.393.68.
Pełny tekst źródłaMoheimani, Reza, i M. Hasansade. "A closed-form model for estimating the effective thermal conductivities of carbon nanotube–polymer nanocomposites". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, nr 8 (31.08.2018): 2909–19. http://dx.doi.org/10.1177/0954406218797967.
Pełny tekst źródłaAbidian, M. R., D. H. Kim i D. C. Martin. "Conducting-Polymer Nanotubes for Controlled Drug Release". Advanced Materials 18, nr 4 (17.02.2006): 405–9. http://dx.doi.org/10.1002/adma.200501726.
Pełny tekst źródłaSa'aya, Nurul Syahirah Nasuha, Siti Zulaikha Ngah Demon, Norli Abdullah i Norhana Abdul Halim. "Morphology Studies of SWCNT Dispersed in Conducting Polymer as Potential Sensing Materials". Solid State Phenomena 317 (maj 2021): 189–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.317.189.
Pełny tekst źródłaKIM, CHEOL, i XINYUN LIU. "ELECTROMECHANICAL BEHAVIOR OF CARBON NANOTUBES-CONDUCTING POLYMER FILMS". International Journal of Modern Physics B 20, nr 25n27 (30.10.2006): 3727–32. http://dx.doi.org/10.1142/s0217979206040271.
Pełny tekst źródłaLiu, Yang, John H. Xin, Xinyu Zhang i Chao Zhang. "Morphological Evolvement of Carbon Nanotubes Synthesized by Using Conducting Polymer Nanofibers". International Journal of Polymer Science 2020 (2.03.2020): 1–8. http://dx.doi.org/10.1155/2020/4953652.
Pełny tekst źródłaBiswas, Sourav, Tanyaradzwa S. Muzata, Beate Krause, Piotr Rzeczkowski, Petra Pötschke i Suryasarathi Bose. "Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?" Journal of Composites Science 4, nr 1 (15.01.2020): 9. http://dx.doi.org/10.3390/jcs4010009.
Pełny tekst źródłaKIM, B. H., D. H. PARK, Y. K. GU, J. JOO, K. G. KIM i J. I. JIN. "ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES OF π-CONJUGATED POLYMER NANOTUBES AND NANOWIRES". Journal of Nonlinear Optical Physics & Materials 13, nr 03n04 (grudzień 2004): 547–51. http://dx.doi.org/10.1142/s0218863504002249.
Pełny tekst źródłaTrchová, Miroslava, i Jaroslav Stejskal. "Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)". Pure and Applied Chemistry 83, nr 10 (10.06.2011): 1803–17. http://dx.doi.org/10.1351/pac-rep-10-02-01.
Pełny tekst źródłaLund, Anja, Yunyun Wu, Benji Fenech-Salerno, Felice Torrisi, Tricia Breen Carmichael i Christian Müller. "Conducting materials as building blocks for electronic textiles". MRS Bulletin 46, nr 6 (czerwiec 2021): 491–501. http://dx.doi.org/10.1557/s43577-021-00117-0.
Pełny tekst źródłaKausar, Ayesha, Ishaq Ahmad i Tingkai Zhao. "Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account". Applied Nano 4, nr 2 (12.05.2023): 138–58. http://dx.doi.org/10.3390/applnano4020008.
Pełny tekst źródłaOh, Youngseok, Daewoo Suh, Youngjin Kim, Eungsuek Lee, Jee Soo Mok, Jaeboong Choi i Seunghyun Baik. "Silver-plated carbon nanotubes for silver/conducting polymer composites". Nanotechnology 19, nr 49 (19.11.2008): 495602. http://dx.doi.org/10.1088/0957-4484/19/49/495602.
Pełny tekst źródłaFradin, Caroline, Franck Celestini, Frédéric Guittard i Thierry Darmanin. "Templateless Electrodeposition of Conducting Polymer Nanotubes on Mesh Substrates". Macromolecular Chemistry and Physics 221, nr 6 (18.02.2020): 1900529. http://dx.doi.org/10.1002/macp.201900529.
Pełny tekst źródłaFradin, Caroline, Franck Celestini, Frédéric Guittard i Thierry Darmanin. "Templateless Electrodeposition of Conducting Polymer Nanotubes on Mesh Substrates". Macromolecular Chemistry and Physics 221, nr 6 (marzec 2020): 2070016. http://dx.doi.org/10.1002/macp.202070016.
Pełny tekst źródłaHu, Fei, Bin Yan, Erhui Ren, Yingchun Gu, Shaojian Lin, Lanlin Ye, Sheng Chen i Hongbo Zeng. "Constructing spraying-processed complementary smart windows via electrochromic materials with hierarchical nanostructures". Journal of Materials Chemistry C 7, nr 47 (2019): 14855–60. http://dx.doi.org/10.1039/c9tc04204k.
Pełny tekst źródłaSidhu, Navjot K., Ratheesh R. Thankalekshmi i A. C. Rastogi. "Solution Processed TiO2 Nanotubular Core with Polypyrrole Conducting Polymer Shell Structures for Supercapacitor Energy Storage Devices". MRS Proceedings 1547 (2013): 69–74. http://dx.doi.org/10.1557/opl.2013.636.
Pełny tekst źródłaSiuzdak, K., M. Szkoda, J. Karczewski, J. Ryl i A. Lisowska-Oleksiak. "Titania nanotubes infiltrated with the conducting polymer PEDOT modified by Prussian blue – a novel type of organic–inorganic heterojunction characterised with enhanced photoactivity". RSC Advances 6, nr 80 (2016): 76246–50. http://dx.doi.org/10.1039/c6ra15113b.
Pełny tekst źródłaForoughi, Javad, Dennis Antiohos i Gordon G. Wallace. "Effect of post-spinning on the electrical and electrochemical properties of wet spun graphene fibre". RSC Advances 6, nr 52 (2016): 46427–32. http://dx.doi.org/10.1039/c6ra07226g.
Pełny tekst źródłaEstrany, Francesc, Aureli Calvet, Luis J. del Valle, Jordi Puiggalí i Carlos Alemán. "A multi-step template-assisted approach for the formation of conducting polymer nanotubes onto conducting polymer films". Polymer Chemistry 7, nr 21 (2016): 3540–50. http://dx.doi.org/10.1039/c6py00437g.
Pełny tekst źródłaGhosh, Srabanti, Suparna Das i Marta E. G. Mosquera. "Conducting Polymer-Based Nanohybrids for Fuel Cell Application". Polymers 12, nr 12 (15.12.2020): 2993. http://dx.doi.org/10.3390/polym12122993.
Pełny tekst źródłaGiri, Jyoti, i Rameshwar Adhikari. "A brief review on preparation and application of MWCNT-based polymer nanocomposites". BIBECHANA 20, nr 1 (5.04.2023): 65–75. http://dx.doi.org/10.3126/bibechana.v20i1.53724.
Pełny tekst źródłaSiuzdak, Katarzyna, Mariusz Szkoda, Anna Lisowska-Oleksiak, Jakub Karczewski i Jacek Ryl. "Highly stable organic–inorganic junction composed of hydrogenated titania nanotubes infiltrated by a conducting polymer". RSC Advances 6, nr 39 (2016): 33101–10. http://dx.doi.org/10.1039/c6ra01986b.
Pełny tekst źródłaMamunya, Ye P. "Polymer blends with ordered distribution of conductive filler". Polymer journal 43, nr 4 (26.11.2021): 240–50. http://dx.doi.org/10.15407/polymerj.43.04.240.
Pełny tekst źródłaYun-Ze, Long, Yin Zhi-Hua, Li Meng-Meng, Gu Chang-Zhi, Duvail Jean-Luc, Jin Ai-Zi i Wan Mei-Xiang. "Current-voltage characteristics of individual conducting polymer nanotubes and nanowires". Chinese Physics B 18, nr 6 (czerwiec 2009): 2514–22. http://dx.doi.org/10.1088/1674-1056/18/6/066.
Pełny tekst źródłaKwon, Oh Seok, Seon Joo Park, Jun Seop Lee, Eunyu Park, Taejoon Kim, Hyun-Woo Park, Sun Ah You, Hyeonseok Yoon i Jyongsik Jang. "Multidimensional Conducting Polymer Nanotubes for Ultrasensitive Chemical Nerve Agent Sensing". Nano Letters 12, nr 6 (2.05.2012): 2797–802. http://dx.doi.org/10.1021/nl204587t.
Pełny tekst źródłaSiuzdak, Katarzyna, Mariusz Szkoda, Anna Lisowska-Oleksiak, Jakub Karczewski i Jacek Ryl. "Correction: Highly stable organic–inorganic junction composed of hydrogenated titania nanotubes infiltrated by a conducting polymer". RSC Advances 7, nr 21 (2017): 12737. http://dx.doi.org/10.1039/c7ra90029e.
Pełny tekst źródłaSłoma, Marcin, Maciej Andrzej Głód i Bartłomiej Wałpuski. "Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline". Materials 14, nr 15 (24.07.2021): 4122. http://dx.doi.org/10.3390/ma14154122.
Pełny tekst źródłaMouecoucou, Raymonde, Leïla Bonnaud i Philippe Dubois. "Negative Capacitance in Nanocomposite Based on High-Density Polyethylene (HDPE) with Multiwalled Carbon Nanotubes (CNTs)". Materials 16, nr 14 (9.07.2023): 4901. http://dx.doi.org/10.3390/ma16144901.
Pełny tekst źródłaChoi, Soon-Mo, Eun-Joo Shin, Sun-Mi Zo, Kummara-Madhusudana Rao, Yong-Joo Seok, So-Yeon Won i Sung-Soo Han. "Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications". International Journal of Molecular Sciences 23, nr 4 (9.02.2022): 1938. http://dx.doi.org/10.3390/ijms23041938.
Pełny tekst źródłaYoo, Dohyuk, Jeonghun Kim, Seung Hwan Lee, Wonseok Cho, Hyang Hee Choi, Felix Sunjoo Kim i Jung Hyun Kim. "Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices". Journal of Materials Chemistry A 3, nr 12 (2015): 6526–33. http://dx.doi.org/10.1039/c4ta06710j.
Pełny tekst źródłaK Manjula, K. Manjula, i V. John Reddy. "Na+ Ion Conducting Nano-Composite Solid Polymer Electrolyte – Application to Electrochemical Cell". Oriental Journal Of Chemistry 38, nr 5 (31.10.2022): 1204–8. http://dx.doi.org/10.13005/ojc/380515.
Pełny tekst źródłaKoshikawa, Yusuke, Ryo Miyashita, Takuya Yonehara, Kyoka Komaba, Reiji Kumai i Hiromasa Goto. "Conducting Polymer Metallic Emerald: Magnetic Measurements of Nanocarbons/Polyaniline and Preparation of Plastic Composites". C 8, nr 4 (4.11.2022): 60. http://dx.doi.org/10.3390/c8040060.
Pełny tekst źródłaXu, Kaiqi, Athanasios Chatzitakis i Truls Norby. "Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting". Photochemical & Photobiological Sciences 16, nr 1 (2017): 10–16. http://dx.doi.org/10.1039/c6pp00217j.
Pełny tekst źródłaSiuzdak, K., M. Szkoda, J. Karczewski, J. Ryl i A. Lisowska-Oleksiak. "Correction: Titania nanotubes infiltrated with the conducting polymer PEDOT modified by Prussian blue – a novel type of organic–inorganic heterojunction characterised with enhanced photoactivity". RSC Advances 7, nr 21 (2017): 12976. http://dx.doi.org/10.1039/c7ra90030a.
Pełny tekst źródłaKim, Jeonghwan, Sang Woo Kim, Hongseok Yun i Bumjoon J. Kim. "Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites". RSC Advances 7, nr 48 (2017): 30221–28. http://dx.doi.org/10.1039/c7ra04015f.
Pełny tekst źródłaOh, Jihyeon, Dong-Young Kim, Hyunwoo Kim, Oh-Nyoung Hur i Sung-Hoon Park. "Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions". Materials 15, nr 21 (30.10.2022): 7637. http://dx.doi.org/10.3390/ma15217637.
Pełny tekst źródłaAghelinejad, Mohammadmehdi, i Siu Leung. "Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers". Materials 11, nr 9 (18.09.2018): 1757. http://dx.doi.org/10.3390/ma11091757.
Pełny tekst źródłaFujihara, Hisashi, Shinya Nambu i Tsukasa Nakahodo. "Synthesis and Properties of Conducting Polymer Nanotubes with Redox-Active Tetrathiafulvalene". HETEROCYCLES 88, nr 2 (2014): 1633. http://dx.doi.org/10.3987/com-13-s(s)117.
Pełny tekst źródłaKUM, M., K. JOSHI, W. CHEN, N. MYUNG i A. MULCHANDANI. "Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application". Talanta 74, nr 3 (15.12.2007): 370–75. http://dx.doi.org/10.1016/j.talanta.2007.08.047.
Pełny tekst źródłaChehata, Nadia, Adnen Ltaief, Rabeb Bkakri i Abdelaziz Bouazizi. "Optical and electrical properties of conducting polymer-functionalized carbon nanotubes nanocomposites". Materials Science in Semiconductor Processing 22 (czerwiec 2014): 7–15. http://dx.doi.org/10.1016/j.mssp.2014.02.010.
Pełny tekst źródłaJi, Tengxiao, Yiyu Feng, Mengmeng Qin i Wei Feng. "Thermal conducting properties of aligned carbon nanotubes and their polymer composites". Composites Part A: Applied Science and Manufacturing 91 (grudzień 2016): 351–69. http://dx.doi.org/10.1016/j.compositesa.2016.10.009.
Pełny tekst źródłaBae, Joonwon, i Jyongsik Jang. "Fabrication of carbon nanotubes from conducting polymer precursor as field emitter". Journal of Industrial and Engineering Chemistry 18, nr 6 (listopad 2012): 1921–24. http://dx.doi.org/10.1016/j.jiec.2012.05.004.
Pełny tekst źródłaZhang, Yi, Haoting Niu, Wu Liyun, Nanyang Wang, Tao Xu, Zhengyang Zhou, Yufeng Xie i in. "Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects". Nano Express 2, nr 4 (22.10.2021): 042002. http://dx.doi.org/10.1088/2632-959x/ac2f09.
Pełny tekst źródłaBae, Hyoung Bong, Jung Ho Ryu, Bok Soo Byun, Seong Ho Choi, Sang Ho Kim i Chul Gyun Hwang. "Radiolytic Deposition of Pt-Ru Catalysts on the Conductive Polymer Coated MWNT and their Catalytic Efficiency for CO and MeOH". Advanced Materials Research 47-50 (czerwiec 2008): 1478–81. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1478.
Pełny tekst źródłaWu, Y., C. H. Liu, H. Huang i S. S. Fan. "The Carbon Nanotube Based Nanocomposite with Enhanced Thermal Conductivity". Solid State Phenomena 121-123 (marzec 2007): 243–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.243.
Pełny tekst źródłaHan, Long, Zhaobo Wang, Jing Hua i Jieting Geng. "Well-Distributed Polysilsesquioxane-Modified Carbon Nanotubes for Thermal Conductive Insulating Silicone Rubbers". Advances in Polymer Technology 2022 (27.08.2022): 1–9. http://dx.doi.org/10.1155/2022/9115873.
Pełny tekst źródłaNiu, Hong Mei. "Conducting Polymer Functionalized Single-Walled Carbon Nanotubes: Synthesis, Morphological Characteristics and Thermal Stability". Advanced Materials Research 306-307 (sierpień 2011): 1182–85. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1182.
Pełny tekst źródłaErnould, Bruno, Olivier Bertrand, Andrea Minoia, Roberto Lazzaroni, Alexandru Vlad i Jean-François Gohy. "Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a “grafting to” approach". RSC Advances 7, nr 28 (2017): 17301–10. http://dx.doi.org/10.1039/c7ra02119d.
Pełny tekst źródłaMaity, Arjun, i Suprakas Sinha Ray. "Conducting Nanocomposites of Poly(N-vinylcarbazole) with Single-Walled Carbon Nanotubes". Journal of Nanoscience and Nanotechnology 8, nr 4 (1.04.2008): 1728–34. http://dx.doi.org/10.1166/jnn.2008.268.
Pełny tekst źródła