Gotowa bibliografia na temat „Conducting Polymer Nanotubes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Conducting Polymer Nanotubes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Conducting Polymer Nanotubes"
Rivière, Pauline, Tiina E. Nypelö, Michael Obersriebnig, Henry Bock, Marcus Müller, Norbert Mundigler i Rupert Wimmer. "Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites". Journal of Thermoplastic Composite Materials 30, nr 12 (23.05.2016): 1615–38. http://dx.doi.org/10.1177/0892705716649651.
Pełny tekst źródłaZakaria, Mohd Yusuf, Hendra Suherman, Jaafar Sahari i Abu Bakar Sulong. "Effect of Mixing Parameter on Electrical Conductivity of Carbon Black/Graphite/Epoxy Nanocomposite Using Taguchi Method". Applied Mechanics and Materials 393 (wrzesień 2013): 68–73. http://dx.doi.org/10.4028/www.scientific.net/amm.393.68.
Pełny tekst źródłaMoheimani, Reza, i M. Hasansade. "A closed-form model for estimating the effective thermal conductivities of carbon nanotube–polymer nanocomposites". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, nr 8 (31.08.2018): 2909–19. http://dx.doi.org/10.1177/0954406218797967.
Pełny tekst źródłaAbidian, M. R., D. H. Kim i D. C. Martin. "Conducting-Polymer Nanotubes for Controlled Drug Release". Advanced Materials 18, nr 4 (17.02.2006): 405–9. http://dx.doi.org/10.1002/adma.200501726.
Pełny tekst źródłaSa'aya, Nurul Syahirah Nasuha, Siti Zulaikha Ngah Demon, Norli Abdullah i Norhana Abdul Halim. "Morphology Studies of SWCNT Dispersed in Conducting Polymer as Potential Sensing Materials". Solid State Phenomena 317 (maj 2021): 189–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.317.189.
Pełny tekst źródłaKIM, CHEOL, i XINYUN LIU. "ELECTROMECHANICAL BEHAVIOR OF CARBON NANOTUBES-CONDUCTING POLYMER FILMS". International Journal of Modern Physics B 20, nr 25n27 (30.10.2006): 3727–32. http://dx.doi.org/10.1142/s0217979206040271.
Pełny tekst źródłaLiu, Yang, John H. Xin, Xinyu Zhang i Chao Zhang. "Morphological Evolvement of Carbon Nanotubes Synthesized by Using Conducting Polymer Nanofibers". International Journal of Polymer Science 2020 (2.03.2020): 1–8. http://dx.doi.org/10.1155/2020/4953652.
Pełny tekst źródłaBiswas, Sourav, Tanyaradzwa S. Muzata, Beate Krause, Piotr Rzeczkowski, Petra Pötschke i Suryasarathi Bose. "Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?" Journal of Composites Science 4, nr 1 (15.01.2020): 9. http://dx.doi.org/10.3390/jcs4010009.
Pełny tekst źródłaKIM, B. H., D. H. PARK, Y. K. GU, J. JOO, K. G. KIM i J. I. JIN. "ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES OF π-CONJUGATED POLYMER NANOTUBES AND NANOWIRES". Journal of Nonlinear Optical Physics & Materials 13, nr 03n04 (grudzień 2004): 547–51. http://dx.doi.org/10.1142/s0218863504002249.
Pełny tekst źródłaTrchová, Miroslava, i Jaroslav Stejskal. "Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)". Pure and Applied Chemistry 83, nr 10 (10.06.2011): 1803–17. http://dx.doi.org/10.1351/pac-rep-10-02-01.
Pełny tekst źródłaRozprawy doktorskie na temat "Conducting Polymer Nanotubes"
Tahhan, May. "Carbon nanotubes and conducting polymer composites". Intelligent Polymers Research Institute - Faculty of Science, 2004. http://ro.uow.edu.au/theses/407.
Pełny tekst źródłaXi, Binbin. "Novel conducting polymer structures for electrochemical actuators". Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060517.100903/index.html.
Pełny tekst źródłaLi, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.
Pełny tekst źródłaKeng, Yenmei. "The effects of temperature and carbon nanotubes on conducting polymer actuator performance". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61879.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 102-103).
Conducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition processing, type of electrolyte, applied voltage for actuation, and temperature. It was shown that increasing temperature caused higher active stress in polypyrrole, an attractive conducting polymer actuator material. However, detailed characterizations were lacking to determine whether the improved active stress was caused by structural change in the polymer and/or charging effect. A temperature-controlled solvent bath was integrated with a custom-built electrochemical dynamic mechanical analyzer to conduct isometric and isotonic tests on polypyrrole under elevated temperature. Experimental results showed that heating increased the charge transport through the polymer and thermal expansion in the polymer allowed more room for charge uptake. As a result, increase in ion movement largely contributed to improvements in actuation stress (rate) and strain (rate), while the decrease in stiffness due to heating had limited effect. Moreover, actuation performance was further improved by choosing large active ion type, BMIM. Although the active stress and strain increased via heating, creep limits the reversibility of conducting polymer actuators. To reduce creep rate, functionalized multi-walled carbon nanotubes (fCNTs) were introduced to fabricate composites with polypyrrole and with PEDOT. Out of four attempted fabrication techniques, drop-casted multilayer structure demonstrated that increasing the amount of fCNTs reduced creep rate, but also decreased active strain, stiffness, and conductivity. Applying higher preload (up to 3 MPa) improved active strain in the composites by providing more space for charge uptake. The amount of sCNTs that provided optimal performance was approximately 20-30% by weight.
by Yenmei (Kerri) Keng.
S.M.
Oh, Jungmin. "Preparation and application of conducting polymer-carbon nanotube composite". [Johnson City, Tenn. : East Tennessee State University], 2004. https://dc.etsu.edu/etd/960.
Pełny tekst źródłaTitle from electronic submission form. ETSU ETD database URN: etd-1110104-211520 Includes bibliographical references. Also available via Internet at the UMI web site.
Chiguma, Jasper. "Conducting polymer nanocomposites loaded with nanotubes and fibers for electrical and thermal applications". Diss., Online access via UMI:, 2009.
Znajdź pełny tekst źródłaWasem, Klein Felipe. "Photoactive polymer – carbon nanotubes hybrid nanostructures". Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAE004.
Pełny tekst źródłaThe objective of this thesis is the preparation of conjugated polymers (P3HT and a derivated copolymer) – carbon nanotubes hybrid materials and their characterization through different spectroscopies and transmission electron microscopy. Non-covalent nanohybrids can be obtained by sonicating both components together in THF. The interaction between both components leads to the wrapping of the polymer around the carbon nanotubes as well as the formation of polymer aggregates on the surface of the nanotubes. The effect of different parameters such as the polymer chain length are described. Covalent nanohybrids can be obtained using a specially designed copolymer bearing an aniline at the end of its side chain. Optical and Raman spectroscopies indicate a low level of functionalization, and suggest that the polymer chains are in a more disordered state compared to non-covalent nanohybrids. Preliminary studies show that the obtained copolymer can be used for functionalizing carbon nanotube based devices. Modification of electrical properties of the devices were small and compatible with the low functionalization degree, but the induced defects allow observation of a photocurrent
Islam, Md Mazharul. "Printed transparent conducting electrodes based on carbon nanotubes (CNTs), reduced graphene oxide (rGO), and a polymer matrix". Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-156366.
Pełny tekst źródłaVignal, Thomas. "Développement d’électrodes utilisant un PCE déposé sur VACNT/Al selon un procédé continu et leur utilisation dans des pseudosupercondensateurs". Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1044.
Pełny tekst źródłaThe work carried out focused on the development of composite electrodes by electrochemically deposition of conductive polymer onto carbon nanotube vertically aligned on aluminum substrate (VACNT/Al). These new VACNT / Al have a very high nanotube density (10^11 - 10^12 CNT/cm²) and offer a very interesting nanometric architecture for the elaboration of electrodes in energy storage devices as supercapacitor. The deposition of polymer on these electrodes allows the increase of the supercapacitors’ specific energies. In addition, this work has also been dedicated to the development of a continuous deposition process for scaling syntheses of the composite. In a first part, the materials used in the composite electrodes have been characterized individually. Thus, ionic liquid medium deposits of poly (3-methylthiophene) (P3MT) and polypyrrole (PPy) polymers at the surface of planar electrodes were made and VACNT were characterized. The second part of this work was devoted to the optimization of electrochemical synthesis by a pulsed chronoamperometric method in ionic liquid medium. P3MT/VACNT/Al nanocomposites with mass proportions of P3MT in the electrode ranging from 10 to 90%. These composites have subsequently been used as electrodes in symmetric and asymmetric supercapacitors in coin-cell devices allowing specifics energies and powers of 52 Wh/kg and 12 kW/kg, respectively. In the third part, a P3MT deposition process onto moving VACNT was developed to study the continuous elaboration of composite electrodes and to allow the preparation of larger electrodes, 80 cm² in this study. These composites showed specific capacitances equivalent to the composites obtained with static deposits. In addition, the 80 cm2 strips were used for the realization of symmetric and asymmetric zig-zag supercapacitors and also showed specific energies and power very similar to those of coin-cells. In a last part, a transfer of method was realized for the synthesis of composite PPy / VACNT, in static then continuous process
Lay, Makara. "Conductive nanopaper from cellulose nanofibers and conductive polymers and/or carbon nanotubes". Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/401711.
Pełny tekst źródłaLes nanofibres de cel·lulosa són un dels materials del futur, gràcies al seu origen natural i renovable, i per les seves propietats físico-químiques, i mecàniques. Recentment, s’està estudiant el seu ús en elèctrodes flexibles, biosensors o supercapacitants. L’objectiu central de la tesis és produir nanopapers conductors a partir de nanofibres de cel·lulosa (CNF) o de cel·lulosa bacteriana (BC), i tres tipus de càrrega conductora, el polipirrol (PPy), el poli(3-4-etilendioxitiofè):poliestirè sulfonat (POEDOT:PSS) i els nanotubs de carboni de paret múltiple (MWCNT). S’ha avaluat l’estructura i morfologia dels materials nanocompòsits, així com les seves propietats tèrmiques, mecàniques i elèctriques. Els resultats mostren el caràcter semiconductor o conductor dels nanocompòsits obtinguts, amb capacitàncies específiques de més de 300 F·g-1 per als nanocompòsits de CNF-PPy i CNF-PEDOT:PSS-PPy. Es demostra la viabilitat de l’ús de nanofibres de cel·lulosa per la fabricació de productes electrònics flexibles, biosensors, o com a dispositius d’emmagatzematge d’energia
Książki na temat "Conducting Polymer Nanotubes"
Roth, S. One-dimensional metals: Conjugated polymers, organic crystals, carbon nanotubes. Wyd. 2. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting polymers, fundamentals and applications: A practical approach. Boston: Kluwer Academic, 1999.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting polymers, fundamentals and applications: A practical approach. Boston: Kluwer Academic, 1999.
Znajdź pełny tekst źródłaCarroll, David, i Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes. Wiley & Sons, Incorporated, John, 2006.
Znajdź pełny tekst źródłaCarroll, David, i Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes. Wiley & Sons, Limited, John, 2005.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene. Springer, 2018.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: Including Carbon Nanotubes and Graphene. Springer, 2019.
Znajdź pełny tekst źródłaCarroll, David, i Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: A Practical Approach. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaChandrasekhar, Prasanna. Conducting Polymers, Fundamentals and Applications: A Practical Approach. Springer, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "Conducting Polymer Nanotubes"
Rawat, Neha Kanwar, P. K. Panda i Anujit Ghosal. "Conducting Polymer/CNT-Based Nanocomposites As Smart Emerging Materials". W Carbon Nanotubes and Nanoparticles, 107–26. Toronto; New Jersey : Apple Academic Press, 2019.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429463877-6.
Pełny tekst źródłaIqbal, Sajid, Rangnath Ravi, Anujit Ghosal, Jaydeep Bhattacharya i Sharif Ahmad. "Advances in Carbon Nanotube-Based Conducting Polymer Composites". W Engineered Carbon Nanotubes and Nanofibrous Materials, 127–41. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-6.
Pełny tekst źródłaSingh, Paramjit. "Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors". W Springer Series on Polymer and Composite Materials, 305–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46458-9_10.
Pełny tekst źródłaChandrasekhar, Prasanna. "Introducing Carbon Nanotubes (CNTs)". W Conducting Polymers, Fundamentals and Applications, 3–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_1.
Pełny tekst źródłaBaibarac, M., I. Baltog i S. Lefrant. "Composites Based on Conducting Polymers and Carbon Nanotubes". W Nanostructured Conductive Polymers, 209–60. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661338.ch5.
Pełny tekst źródłaHwang, Sang-ha, Jeong-Min Seo, In-Yup Jeon, Young-Bin Park* i Jong-Beom Baek*. "Chapter 1. Conducting Polymer-based Carbon Nanotube Composites: Preparation and Applications". W Carbon Nanotube-Polymer Composites, 1–21. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736817-00001.
Pełny tekst źródłaAnderson, Ankoma, Fushen Lu*, Mohammed J. Meziani* i Ya-Ping Sun*. "Chapter 6. Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices". W Carbon Nanotube-Polymer Composites, 182–211. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736817-00182.
Pełny tekst źródłaZhao, Hang, Delong He i Jinbo Bai. "Chapter 4. Graphite Nanoplatelet–Carbon Nanotube Hybrids for Electrical Conducting Polymer Composites". W Two-dimensional Inorganic Nanomaterials for Conductive Polymer Nanocomposites, 129–203. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162596-00129.
Pełny tekst źródłaDai, Liming. "From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics". W Perspectives of Fullerene Nanotechnology, 93–111. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-9598-3_9.
Pełny tekst źródłaBok Lee, Sang, i Seung Cho. "Conducting Polymer Nanotubes". W Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition - Six Volume Set (Print Version). CRC Press, 2004. http://dx.doi.org/10.1201/9781439834398.ch342.
Pełny tekst źródłaStreszczenia konferencji na temat "Conducting Polymer Nanotubes"
Khorrami, Milad, i Mohammad Reza Abidian. "Aligned Conducting Polymer Nanotubes for Neural Prostheses". W 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513649.
Pełny tekst źródłaTai-Jin Kim, Si-Dong Kim, Nam-Ki Min, James Jungho Pak, Cheol-Jin Lee i Soo-Won Kim. "NH3 sensitive chemiresistor sensors using plasma functionalized multiwall carbon nanotubes/conducting polymer composites". W 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716419.
Pełny tekst źródłaWei-Chao Chen, Hsiang-Ting Lien, Tzu-Wei Cheng, Kuei-Hsien Chen i Li-Chyong Chen. "Polymer-assisted dispersion of single-wall carbon nanotubes for transparent conducting film fabrication". W 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644274.
Pełny tekst źródłaKim, Jaehwan, Zoubeida Ounaies, Sung-Ryul Yun, Yukeun Kang i Seung-Hun Bae. "Electroactive Paper Materials Coated With Carbon Nanotubes and Conducting Polymers". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79579.
Pełny tekst źródłaDatta, Kunal, Arti Rushi, Prasanta Ghosh i Mahendra Shirsat. "Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032333.
Pełny tekst źródłaCastagna, R., C. Sciascia, A. R. Srimath Kandada, M. Meneghetti, G. Lanzani i C. Bertarelli. "Light-triggered conducting properties of a random carbon nanotubes network in a photochromic polymer matrix". W SPIE NanoScience + Engineering, redaktorzy Didier Pribat, Young-Hee Lee i Manijeh Razeghi. SPIE, 2011. http://dx.doi.org/10.1117/12.893958.
Pełny tekst źródłaSoldano, Caterina, Swastik Kar, Yung Joon Jung i Pulikel M. Ajayan. "Electro-Mechanically Robust, Flexible Carbon Nanotube-PDMS Composite for High Performance Field Emission". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17034.
Pełny tekst źródłaBougher, Thomas L., Virendra Singh i Baratunde A. Cola. "Thermal Interface Materials From Vertically Aligned Polymer Nanotube Arrays". W ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22226.
Pełny tekst źródłaPham, Giang T., Young-Bin Park i Ben Wang. "Development of Carbon-Nanotube-Based Nanocomposite Strain Sensor". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82309.
Pełny tekst źródłaLee, S. W., D. Katz, H. Grebel, D. Lopez i A. Kornblit. "Carbon Nanotube/Conducting Polymer Addressable Interconnects". W CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452712.
Pełny tekst źródłaRaporty organizacyjne na temat "Conducting Polymer Nanotubes"
Yang, Arnold C. Dispersion and Reinforcement of Nanotubes in High Temperature Polymers for Ultrahigh Strength and Thermally Conductive Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, październik 2007. http://dx.doi.org/10.21236/ada472590.
Pełny tekst źródła